26,617 research outputs found

    Advanced Solar Receivers

    Get PDF
    Low thermal efficiencies in solar receivers are discussed in terms of system design. It is recommended that careful attention be given to the overall thermal systems design, especially to conductive losses about the window and areas of relatively thin insulation. If the cavity design is carefully managed to insure a small, minimally reradiating aperture, the goal of a very high efficiency cavity receiver is a realistic one

    Concentrator Development

    Get PDF
    During the years of technology development by the Parabolic Dish program, the problems peculiar to tracking dishes have been explored in depth with particular emphasis on economics. Starting with the Precursor Concentrator, testing techniques and apparatus such as calorimeters and the flux mapper were developed. At the same time, mirrors were developed to have a long operating life as well as high performance. Commercially available equipment was evaluated as well. Building on all these elements, the Test Bed Concentrators were designed and built. With a peak intensity in the focal plane of over 17,500 suns and an average concentrator ratio over 3000 on an eight inch diameter aperture, they have proven to be the work horses of the technology. With a readily adjustable mirror array, they have proved to be an essential tool in the development of dish components, receivers, heat transport systems, instrumentation, controls, engines, and materials - all necessary to cost effective modules and plants. Utilizing the lessons learned from this technology, most cost effective systems were designed. These included Parabolic Dish Number 1 (PDC-1) and PDC-2 currently in final design by Acurex Corporation. Even more advanced concepts are being worked on, such as the Cassegranian systems by BDM Corporation

    The development of an 85-kW (thermal) air Brayton receiver

    Get PDF
    The results of the program from its inception through December 1980 are presented. The design requirements, concept, and significant analysis upon which the receiver is based are described. The fabrication processes that have been utilized in the construction of the prototype receivers at the test station are summarized. The test and evaluation phase at the Parabolic Dish Test Site are described

    Development of a character, line and point display system

    Get PDF
    A compact graphics terminal for use as the input to a computerized medical records system is described. The principal mode of communication between the terminal and the records system is by checklists and menu selection. However, the terminal accepts short, handwritten messages as well as conventional alphanumeric input. The terminal consists of an electronic tablet, a display, a microcomputer controller, a character generator, and a refresh memory for the display. An Intel SBC 80/10 microcomputer controls the flow of information and a 16 kilobyte memory stores the point-by-point array of information to be displayed. A specially designed interface continuously generates the raster display without the intervention of the microcomputer

    Collimated beam manifold with the number of output beams variable at a given output angle

    Get PDF
    An optical manifold is described which transforms a collimated beam, such as a laser beam, into a plurality of parallel beams having uniform intensity or having a desired intensity ratio. The manifold comprises an optical substrate coated on its rear surface with a fully reflective layer and on its front surface with a partially reflecting layer having a reflectivity gradient. An input collimated beam entering the rear surface and impinging on the front surface is reflected, multiply between the front and rear surfaces producing a plurality of parallel beams that emerge from the front surface. The intensities of the emerging beams have a relationship that depends on the reflectivity of the front surface at the points where the beams emerge. By properly selecting the reflectivity gradient, the emerging beams have uniform intensity or a desired intensity ratio

    Dual laser optical system and method for studying fluid flow

    Get PDF
    A dual laser optical system and method is disclosed for visualization of phenomena in transport substances which induce refractive index gradients such as fluid flow and pressure and temperature gradients in fluids and gases. Two images representing mutually perpendicular components of refractive index gradients may be viewed simultaneously on screen. Two lasers having wave lengths in the visible range but separated by about 1000 angstroms are utilized to provide beams which are collimated into a beam containing components of the different wave lengths. The collimated beam is passed through a test volume of the transparent substance. The collimated beam is then separated into components of the different wave lengths and focused onto a pair of knife edges arranged mutually perpendicular to produce and project images onto the screen

    Low energy operation of the DIAMOND light source

    Get PDF
    Abstract Within the last decade storage ring free-electron lasers (SRFELs) have reached UV output wavelengths and beyond: several facilities have achieved down to 250nm and quite recently below 200nm. The design of DIAMOND, the third-generation replacement for the existing SRS light source at Daresbury Laboratory, has been optimised at 3 GeV to provide high quality output for the scientific community, mainly from a range of insertion devices. In this paper we propose an additional DIAMOND regime at 1-1.5 GeV in an attempt also to include an SRFEL which would be of major benefit to users needing high quality, high brightness UV/VUV radiation. Such variable ring operating energy will have significant implications, not least in achieving acceptable beam lifetimes. In addition, enhanced beam coherent instabilities (notably microwave) at low energy will affect the single bunch length (peak current) and energy spread which will in turn limit the achievable FEL gain. All these factors will have to be assessed in the detailed design stages of DIAMOND. DIAMOND LIGHT SOURCE The recent successful demonstration of an SRFEL on the ELETTRA light source [1], together with earlier experience at LURE (Super-ACO) and elsewhere, has encouraged interest in the incorporation of such advanced facilities in all leading light sources. The normal operating mode of DIAMOND at 3GeV is described in detail elsewhere FEL OPERATING MODE When operating in optimised FEL mode, the storage ring will be populated with bunches spaced apart in time by twice the round trip time in the FEL cavity, ensuring energy transfer occurs as frequently as possible; the cavity length is always chosen to be a sub-harmonic of the storage ring circumference, whilst satisfying other, practical constraints. The final circumference of the DIAMOND storage ring has not yet been fixed but may be finalised at 528 m (an increase on the present 489 m layout [2] to budget for additional elements), giving a harmonic number of 880 at 500 MHz RF frequency. With 8 equally spaced bunches this leads to a required cavity length of 33 m, which is reasonable (cf. the ELETTRA device which has a cavity length of 32.4 m [1]). Since a very small vertical emittance is not necessary for FEL operation, a conservative coupling value of 3% has been assumed for these calculations, which should both be readily achievable and provide a satisfactory Touschek lifetime; both greater coupling and larger emittance could be selected if necessary. The momentum acceptance will be the primary limit on the beam lifetime at low energies, via Touschek scattering and quantum lifetime; the 4% dynamic and physical acceptance limit specified for 3 GeV operation BUNCH MODELLING To provide peak currents of tens of Amperes, as will be needed for useful FEL gains, bunch currents of several milliamperes are required. At these currents the effects of bunch lengthening from potential well distortion (PWD) and from the microwave instability (MI) are large, but are beneficial in that they provide low enough number densities within the bunches to give an acceptable Touschek lifetime; however the issue is whether sufficient peak current can then be maintained, together with acceptable energy spread. The ZAP code [3] was used to predict the effect on bunch parameters of PWD and MI (details are given in [4]); however, the implementation of Brück's approximatio

    Conceptual development of the Laser Beam Manifold (LBM)

    Get PDF
    The laser beam manifold, a device for transforming a single, narrow, collimated beam of light into several beams of desired intensity ratios is described. The device consists of a single optical substrate with a metallic coating on both optical surfaces. By changing the entry point, the number of outgoing beams can be varied

    Geometric distortion analysis of a wide-field astrograph

    Get PDF
    Ground-based optical navigation seeks to determine the angular position of a star, Solar System body, or laser-emitting spacecraft relative to objects with well-known coordinates. Measurement accuracies of 25 nrad would make optical techniques competitive with current radio metric technology. This article examines a proposed design for a wide-field astrograph and concludes that the deviation of an image centroid from the ideal projection can be modeled to the desired accuracy provided that the field of view does not exceed 5 deg on a side
    corecore