223 research outputs found

    A versatile synthesis method of dendrites-free segmented nanowires with a precise size control

    Get PDF
    We report an innovative strategy to obtain cylindrical nanowires combining well established and low-cost bottom-up methods such as template-assisted nanowires synthesis and electrodeposition process. This approach allows the growth of single-layer or multi-segmented nanowires with precise control over their length (from few nanometers to several micrometers). The employed techniques give rise to branched pores at the bottom of the templates and consequently dendrites at the end of the nanowires. With our method, these undesired features are easily removed from the nanowires by a selective chemical etching. This is crucial for magnetic characterizations where such non-homogeneous branches may introduce undesired features into the final magnetic response. The obtained structures show extremely narrow distributions in diameter and length, improved robustness and high-yield, making this versatile approach strongly compatible with large scale production at an industrial level. Finally, we show the possibility to tune accurately the size of the nanostructures and consequently provide an easy control over the magnetic properties of these nanostructures

    Numerical study of the thermoelectric power factor in ultra-thin Si nanowires

    Full text link
    Low dimensional structures have demonstrated improved thermoelectric (TE) performance because of a drastic reduction in their thermal conductivity, {\kappa}l. This has been observed for a variety of materials, even for traditionally poor thermoelectrics such as silicon. Other than the reduction in {\kappa}l, further improvements in the TE figure of merit ZT could potentially originate from the thermoelectric power factor. In this work, we couple the ballistic (Landauer) and diffusive linearized Boltzmann electron transport theory to the atomistic sp3d5s*-spin-orbit-coupled tight-binding (TB) electronic structure model. We calculate the room temperature electrical conductivity, Seebeck coefficient, and power factor of narrow 1D Si nanowires (NWs). We describe the numerical formulation of coupling TB to those transport formalisms, the approximations involved, and explain the differences in the conclusions obtained from each model. We investigate the effects of cross section size, transport orientation and confinement orientation, and the influence of the different scattering mechanisms. We show that such methodology can provide robust results for structures including thousands of atoms in the simulation domain and extending to length scales beyond 10nm, and point towards insightful design directions using the length scale and geometry as a design degree of freedom. We find that the effect of low dimensionality on the thermoelectric power factor of Si NWs can be observed at diameters below ~7nm, and that quantum confinement and different transport orientations offer the possibility for power factor optimization.Comment: 42 pages, 14 figures; Journal of Computational Electronics, 201

    Cobalt and Nickel Nanopillars on Aluminium Substrates by Direct Current Electrodeposition Process

    Get PDF
    A fast and cost-effective technique is applied for fabricating cobalt and nickel nanopillars on aluminium substrates. By applying an electrochemical process, the aluminium oxide barrier layer is removed from the pore bottom tips of nanoporous anodic alumina templates. So, cobalt and nickel nanopillars are fabricated into these templates by DC electrodeposition. The resulting nanostructure remains on the aluminium substrate. In this way, this method could be used to fabricate a wide range of nanostructures which could be integrated in new nanodevices

    Use of Ionic Liquid in Fabrication, Characterization, and Processing of Anodic Porous Alumina

    Get PDF
    Two different ionic liquids have been tested in the electrochemical fabrication of anodic porous alumina in an aqueous solution of oxalic acid. It was found that during galvanostatic anodization of the aluminum at a current density of 200 mA/cm2, addition of 0.5% relative volume concentration of 1-butyl-3-methylimidazolium tetrafluoborate resulted in a three-fold increase of the growth rate, as compared to the bare acidic solution with the same acid concentration. This ionic liquid was also used successfully for an assessment of the wettability of the outer surface of the alumina, by means of liquid contact angle measurements. The results have been discussed and interpreted with the aid of atomic force microscopy. The observed wetting property allowed to use the ionic liquid for protection of the pores during a test removal of the oxide barrier layer
    corecore