109 research outputs found

    Compressional Mode Softening and Euler Buckling Patterns in Mesoscopic Beams

    Get PDF
    We describe a sequence of Euler buckling instabilities associated with the transverse modes of a mesoscopic beam subjected to compressional strain. As the strain is increased, successively higher normal mode frequencies are driven to zero; each zero signals an instability in the corresponding normal mode that can be realized if all lower instabilities are suppressed by constraints. When expressed in terms of the critical buckling modes, the potential energy functional takes the form of a multimode Ginzburg–Landau system that describes static equilibria in the presence of symmetry breaking forces. This model is used to analyse the complex equilibrium shapes that have been observed experimentally in strained mesoscopic beams. Theoretically predicted critical strain values agree with the appearances of higher order mode structures as the length-to-width aspect ratio increases. The theory also predicts upper bounds on the individual mode amplitudes that are consistent with the data. Based on insights from the theory, we suggest possible origins of the buckling patterns

    Symmetries of the near horizon of a Black Hole by Group Theoretic methods

    Get PDF
    We use group theoretic methods to obtain the extended Lie point symmetries of the quantum dynamics of a scalar particle probing the near horizon structure of a black hole. Symmetries of the classical equations of motion for a charged particle in the field of an inverse square potential and a monopole, in the presence of certain model magnetic fields and potentials are also studied. Our analysis gives the generators and Lie algebras generating the inherent symmetries.Comment: To appear in Int. J. Mod. Phys.

    Quantum Effects in the Mechanical Properties of Suspended Nanomechanical Systems

    Full text link
    We explore the quantum aspects of an elastic bar supported at both ends and subject to compression. If strain rather than stress is held fixed, the system remains stable beyond the buckling instability, supporting two potential minima. The classical equilibrium transverse displacement is analogous to a Ginsburg-Landau order parameter, with strain playing the role of temperature. We calculate the quantum fluctuations about the classical value as a function of strain. Excitation energies and quantum fluctuation amplitudes are compared for silicon beams and carbon nanotubes.Comment: RevTeX4. 5 pages, 3 eps figures. Submitted to Physical Review Letter

    Implications of non-feasible transformations among icosahedral hh orbitals

    Get PDF
    The symmetric group S6S_6 that permutes the six five-fold axes of an icosahedron is introduced to go beyond the simple rotations that constitute the icosahedral group II. Owing to the correspondence hdh\leftrightarrow d, the calculation of the Coulomb energies for the icosahedral configurations hNh^N based on the sequence O(5)S6S5IO(5) \supset S_6 \supset S_5 \supset I can be brought to bear on Racah's classic theory for the atomic d shell based on SO(5)SOL(3)ISO(5) \supset SO_L(3) \supset I. Among the elements of S6S_6 is the kaleidoscope operator K{\cal K} that rotates the weight space of SO(5) by π/2\pi/2. Its use explains some puzzling degeneracies in d^3 involving the spectroscopic terms ^2P, ^2F, ^2G and ^2H.Comment: Tentatively scheduled to appear in Physical Preview Letters Apr 5, 99. Revtex, 1 ps figur

    Z7Z_7 Orbifold Models in M-Theory

    Full text link
    Among T7/ΓT^7/\Gamma orbifold compactifications of MM-theory, we examine models containing the particle physics Standard Model in four-dimensional spacetimes, which appear as fixed subspaces of the ten-dimensional spacetimes at each end of the interval, I1S1/Z2I^1\simeq S^1/Z_2, spanning the 11th11^\text{th} dimension. Using the Z7Z_7 projection to break the E8E_8 gauge symmetry in each of the four-planes and a limiting relation to corresponding heterotic string compactifications, we discuss the restrictions on the possible resulting gauge field and matter spectra. In particular, some of the states are non-local: they connect two four-dimensional Worlds across the 11th11^\text{th} dimension. We illustrate our programmable calculations of the matter field spectrum, including the anomalous U(1) factor which satisfies a universal Green-Schwarz relation, discuss a Dynkin diagram technique to showcase a model with SU(3)×SU(2)×U(1)5SU(3)\times SU(2)\times U(1)^5 gauge symmetry, and discuss generalizations to higher order orbifolds.Comment: 23 pages, 2 figures, 4 tables; LaTeX 3 time

    Sequence of Potentials Interpolating between the U(5) and E(5) Symmetries

    Full text link
    It is proved that the potentials of the form β2n\beta^{2n} (with nn being integer) provide a ``bridge'' between the U(5) symmetry of the Bohr Hamiltonian with a harmonic oscillator potential (occuring for n=1n=1) and the E(5) model of Iachello (Bohr Hamiltonian with an infinite well potential, materialized for infinite nn). Parameter-free (up to overall scale factors) predictions for spectra and B(E2) transition rates are given for the potentials β4\beta^4, β6\beta^6, β8\beta^8, corresponding to R4=E(4)/E(2)R_4=E(4)/E(2) ratios of 2.093, 2.135, 2.157 respectively, compared to the R4R_4 ratios 2.000 of U(5) and 2.199 of E(5). Hints about nuclei showing this behaviour, as well as about potentials ``bridging'' the E(5) symmetry with O(6) are briefly discussed. A note about the appearance of Bessel functions in the framework of E(n) symmetries is given as a by-product.Comment: LaTeX, 17 pages, 9 postscript figure

    Lattice-dynamics of a Disordered solid-solid Interface

    Full text link
    Generic properties of elastic phonon transport at a disordered interface are studied. The results show that phonon transmittance is a strong function of frequency and the disorder correlation length. At frequencies lower than the van Hove singularity the transmittance at a given frequency increases as the correlation length decreases. At low frequencies, this is reflected by different power-laws for phonon conductance across correlated and uncorrelated disordered interfaces which are in approximate agreement with perturbation theory of an elastic continuum. These results can be understood in terms of simple mosaic and two-colour models of the interface.Comment: 17 pages, 5 figures, submitted to PR

    The Eliashberg Function of Amorphous Metals

    Full text link
    A connection is proposed between the anomalous thermal transport properties of amorphous solids and the low-frequency behavior of the Eliashberg function. By means of a model calculation we show that the size and frequency dependence of the phonon mean-free-path that has been extracted from measurements of the thermal conductivity in amorphous solids leads to a sizeable linear region in the Eliashberg function at small frequencies. Quantitative comparison with recent experiments gives very good agreement.Comment: 4pp., REVTeX, 1 uuencoded ps fig. Original posting had a corrupted raw ps fig appended. Published as PRB 51, 689 (1995

    On the 3n+l Quantum Number in the Cluster Problem

    Full text link
    It has recently been suggested that an exactly solvable problem characterized by a new quantum number may underlie the electronic shell structure observed in the mass spectra of medium-sized sodium clusters. We investigate whether the conjectured quantum number 3n+l bears a similarity to the quantum numbers n+l and 2n+l, which characterize the hydrogen problem and the isotropic harmonic oscillator in three dimensions.Comment: 8 pages, revtex, 4 eps figures included, to be published in Phys.Rev.A, additional material available at http://radix2.mpi-stuttgart.mpg.de/koch/Diss

    Glass-Like Heat Conduction in High-Mobility Crystalline Semiconductors

    Full text link
    The thermal conductivity of polycrystalline semiconductors with type-I clathrate hydrate crystal structure is reported. Ge clathrates (doped with Sr and/or Eu) exhibit lattice thermal conductivities typical of amorphous materials. Remarkably, this behavior occurs in spite of the well-defined crystalline structure and relatively high electron mobility (100cm2/Vs\sim 100 cm^2/Vs). The dynamics of dopant ions and their interaction with the polyhedral cages of the structure are a likely source of the strong phonon scattering.Comment: 4 pages, 3 postscript figures, to be published, Phys. Rev. Let
    corecore