89 research outputs found

    A Limit on the Polarized Anisotropy of the Cosmic Microwave Background at Subdegree Angular Scales

    Full text link
    A ground-based polarimeter, PIQUE, operating at 90 GHz has set a new limit on the magnitude of any polarized anisotropy in the cosmic microwave background. The combination of the scan strategy and full width half maximum beam of 0.235 degrees gives broad window functions with average multipoles, l = 211+294-146 and l = 212+229-135 for the E- and B-mode window functions, respectively. A joint likelihood analysis yields simultaneous 95% confidence level flat band power limits of 14 and 13 microkelvin on the amplitudes of the E- and B-mode angular power spectra, respectively. Assuming no B-modes, a 95% confidence limit of 10 microkelvin is placed on the amplitude of the E-mode angular power spectrum alone.Comment: 4 pages, 3 figures, submitted to Astrophysical Journal Letter

    A Highly Ordered Faraday-Rotation Structure in the Interstellar Medium

    Get PDF
    We describe a Faraday-rotation structure in the Interstellar Medium detected through polarimetric imaging at 1420 MHz from the Canadian Galactic Plane Survey (CGPS). The structure, at l=91.8, b=-2.5, has an extent of ~2 degree, within which polarization angle varies smoothly over a range of ~100 degree. Polarized intensity also varies smoothly, showing a central peak within an outer shell. This region is in sharp contrast to its surroundings, where low-level chaotic polarization structure occurs on arcminute scales. The Faraday-rotation structure has no counterpart in radio total intensity, and is unrelated to known objects along the line of sight, which include a Lynds Bright Nebula, LBN 416, and the star cluster M39 (NGC7092). It is interpreted as a smooth enhancement of electron density. The absence of a counterpart, either in optical emission or in total intensity, establishes a lower limit to its distance. An upper limit is determined by the strong beam depolarization in this direction. At a probable distance of 350 +/- 50 pc, the size of the object is 10 pc, the enhancement of electron density is 1.7 cm-3, and the mass of ionized gas is 23 M_sun. It has a very smooth internal magnetic field of strength 3 microG, slightly enhanced above the ambient field. G91.8-2.5 is the second such object to be discovered in the CGPS, and it seems likely that such structures are common in the Magneto-Ionic Medium.Comment: 16 pages, 5 figures, ApJ accepte

    TRIS I: Absolute Measurements of the Sky Brightness Temperature at 0.6, 0.82 and 2.5 GHz

    Full text link
    At frequencies close to 1 GHz the sky diffuse radiation is a superposition of radiation of Galactic origin, the 3 K Relic or Cosmic Microwave Background Radiation, and the signal produced by unresolved extragalactic sources. Because of their different origin and space distribution the relative importance of the three components varies with frequency and depends on the direction of observation. With the aim of disentangling the components we built TRIS, a system of three radiometers, and studied the temperature of the sky at Îœ=0.6\nu =0.6, Îœ=0.82\nu = 0.82 and Îœ=2.5\nu = 2.5 GHz using geometrically scaled antennas with identical beams (HPBW = 18∘×23∘18^{\circ} \times 23^{\circ}). Observations included drift scans along a circle at constant declination ÎŽ=+42∘\delta=+42^{\circ} which provided the dependence of the sky signal on the Right Ascension, and absolute measurement of the sky temperature at selected points along the same scan circle. TRIS was installed at Campo Imperatore (lat. = 42∘ 26â€Č42^{\circ}~26' N, long.= 13∘ 33â€Č13^{\circ}~33', elevation = 2000 m a.s.l.) in Central Italy, close to the Gran Sasso Laboratory.Comment: Accepted for publication in The Astrophysical Journa

    Wilkinson Microwave Anisotropy Probe (WMAP) First Year Observations: TE Polarization

    Get PDF
    The Wilkinson Microwave Anisotropy Probe (WMAP) has mapped the full sky in Stokes I, Q, and U parameters at frequencies 23, 33, 41, 61, and 94 GHz. We detect correlations between the temperature and polarization maps significant at more than 10 standard deviations. The correlations are present in all WMAP frequency bands with similar amplitude from 23 to 94 GHz, and are consistent with a superposition of a CMB signal with a weak foreground. The fitted CMB component is robust against different data combinations and fitting techniques. On small angular scales theta < 5 deg, the WMAP data show the temperature-polarization correlation expected from adiabatic perturbations in the temperature power spectrum. The data for l > 20 agree well with the signal predicted solely from the temperature power spectra, with no additional free parameters. We detect excess power on large angular scales (theta > 10 deg) compared to predictions based on the temperature power spectra alone. The excess power is well described by reionization at redshift 11 < z_r < 30 at 95% confidence, depending on the ionization history. A model-independent fit to reionization optical depth yields results consistent with the best-fit LambdaCDM model, with best fit value tau = 0.17 +- 0.04 at 68% confidence, including systematic and foreground uncertainties. This value is larger than expected given the detection of a Gunn-Peterson trough in the absorption spectra of distant quasars, and implies that the universe has a complex ionization history: WMAP has detected the signal from an early epoch of reionization.Comment: Replaced with version accepted by ApJ; Fig. 9 caption fixed. One of 13 companion papers on first-year WMAP results; 33 pages, 9 figures; version with higher quality figures is at http://lambda.gsfc.nasa.gov

    TRIS III: the diffuse galactic radio emission at Ύ=+42∘\delta=+42^{\circ}

    Full text link
    We present values of temperature and spectral index of the galactic diffuse radiation measured at 600 and 820 MHz along a 24 hours right ascension circle at declination ÎŽ=+42∘\delta = +42^{\circ}. They have been obtained from a subset of absolute measurements of the sky temperature made with TRIS, an experiment devoted to the measurement of the Cosmic Microwave Background temperature at decimetric-wavelengths with an angular resolution of about 20∘20^{\circ}. Our analysis confirms the preexisting picture of the galactic diffuse emission at decimetric wavelength and improves the accuracy of the measurable quantities. In particular, the signal coming from the halo has a spectral index in the range 2.9−3.12.9-3.1 above 600 MHz, depending on the sky position. In the disk, at TRIS angular resolution, the free-free emission accounts for the 11% of the overall signal at 600 MHz and 21% at 1420 MHz. The polarized component of the galactic emission, evaluated from the survey by Brouw and Spoelstra, affects the observations at TRIS angular resolution by less than 3% at 820 MHz and less than 2% at 600 MHz. Within the uncertainties, our determination of the galactic spectral index is practically unaffected by the correction for polarization. Since the overall error budget of the sky temperatures measured by TRIS at 600 MHz, that is 66 mK(systematic)++18 mK (statistical), is definitely smaller than those reported in previous measurements at the same frequency, our data have been used to discuss the zero levels of the sky maps at 150, 408, 820 and 1420 MHz in literature. Concerning the 408 MHz survey, limiting our attention to the patch of sky corresponding to the region observed by TRIS, we suggest a correction of the base-level of (+3.9±0.6)(+3.9\pm 0.6)K.Comment: Accepted for publication in the Astrophysical Journa

    A New approach for a Galactic Synchrotron Polarized Emission Template in the Microwave Range

    Get PDF
    We present a new approach in modelling the polarized Galactic synchrotron emission in the microwave range (20-100 GHz), where this radiation is expected to play the leading role in contaminating the Cosmic Microwave Background (CMB) data. Our method is based on real surveys and aims at providing the real spatial distributions of both polarized intensity and polarization angles. Its main features are the modelling of a polarization horizon to determine the polarized intensity and the use of starlight optical data to model the polarization angle pattern. Our results are consistent with several existing data, and our template is virtually free from Faraday rotation effects as required at frequencies in the cosmological window.Comment: 12 pages with 15 figures, submitted to MNRA

    Radio polarimetric imaging of the interstellar medium: magnetic field and diffuse ionized gas structure near the W3/W4/W5/HB3 complex

    Get PDF
    We have used polarimetric imaging to study the magneto-ionic medium of the Galaxy, obtaining 1420 MHz images with an angular resolution of 1' over more than 40 square-degrees of sky around the W3/W4/W5/HB3 HII region/SNR complex in the Perseus Arm. Features detected in polarization angle are imposed on the linearly polarized Galactic synchrotron background emission by Faraday rotation arising in foreground ionized gas having an emission measure as low as 1 cm^{-6} pc. Several new remarkable phenomena have been identified, including: mottled polarization arising from random fluctuations in a magneto-ionic screen that we identify with a medium in the Perseus Arm, probably in the vicinity of the HII regions themselves; depolarization arising from very high rotation measures (several times 10^3 rad m^{-2}) and rotation measure gradients due to the dense, turbulent environs of the HII regions; highly ordered features spanning up to several degrees; and an extended influence of the HII regions beyond the boundaries defined by earlier observations. In particular, the effects of an extended, low-density ionized halo around the HII region W4 are evident, probably an example of the extended HII envelopes postulated as the origin of weak recombination-line emission detected from the Galactic ridge. Our polarization observations can be understood if the uniform magnetic field component in this envelope scales with the square-root of electron density and is 20 microG at the edge of the depolarized region around W4, although this is probably an over-estimate since the random field component will have a significant effect.Comment: 18 pages, 8 figures (7 jpeg and 1 postscript), accepted for publication in the Astrophysical Journa

    GMIMS: The Global Magneto-Ionic Medium Survey

    Full text link
    The Global Magneto-Ionic Medium Survey (GMIMS) is a project to map the diffuse polarized emission over the entire sky, Northern and Southern hemispheres, from 300 MHz to 1.8 GHz. With an angular resolution of 30 - 60 arcmin and a frequency resolution of 1 MHz or better, GMIMS will provide the first spectro-polarimetric data set of the large-scale polarized emission over the entire sky, observed with single-dish telescopes. GMIMS will provide an invaluable resource for studies of the magneto-ionic medium of the Galaxy in the local disk, halo, and its transition.Comment: To appear in Cosmic Magnetic Fields: From Planets, to Stars and Galaxies, eds. K.G. Strassmeier, A.G. Kosovichev & J.E. Beckma

    Polarization angular spectra of Galactic synchrotron emission on arcminute scales

    Get PDF
    We study the angular power spectra of the polarized component of the Galactic synchrotron emission in the 28-deg^2 Test Region of the Southern Galactic Plane Survey at 1.4 GHz. These data were obtained by the Australia Telescope Compact Array and allow us to investigate angular power spectra down to arcminute scales. We find that, at this frequency, the polarization spectra for E- and B-modes seem to be affected by Faraday rotation produced in compact foreground screens. A different behavior is shown by the angular spectrum of the polarized intensity PI=\sqrt{Q^2+U^2}. This is well fitted by a power law with slope \~1.7, which agrees with higher frequency results and can probably be more confidently extrapolated to the cosmological window.Comment: 11 pages, 6 figures, accepted for publication in Ap

    A very brief description of LOFAR - the Low Frequency Array

    Get PDF
    LOFAR (Low Frequency Array) is an innovative radio telescope optimized for the frequency range 30-240 MHz. The telescope is realized as a phased aperture array without any moving parts. Digital beam forming allows the telescope to point to any part of the sky within a second. Transient buffering makes retrospective imaging of explosive short-term events possible. The scientific focus of LOFAR will initially be on four key science projects (KSPs): 1) detection of the formation of the very first stars and galaxies in the universe during the so-called epoch of reionization by measuring the power spectrum of the neutral hydrogen 21-cm line (Shaver et al. 1999) on the ~5' scale; 2) low-frequency surveys of the sky with of order 10810^8 expected new sources; 3) all-sky monitoring and detection of transient radio sources such as gamma-ray bursts, x-ray binaries, and exo-planets (Farrell et al. 2004); and 4) radio detection of ultra-high energy cosmic rays and neutrinos (Falcke & Gorham 2003) allowing for the first time access to particles beyond 10^21 eV (Scholten et al. 2006). Apart from the KSPs open access for smaller projects is also planned. Here we give a brief description of the telescope.Comment: 2 pages, IAU GA 2006, Highlights of Astronomy, Volume 14, K.A. van der Hucht, e
    • 

    corecore