19,019 research outputs found

    On a q-analogue of the multiple gamma functions

    Full text link
    A qq-analogue of the multiple gamma functions is introduced, and is shown to satisfy the generalized Bohr-Morellup theorem. Furthermore we give some expressions of these function.Comment: 8 pages, AMS-Late

    Optimisation of confinement in a fusion reactor using a nonlinear turbulence model

    Full text link
    The confinement of heat in the core of a magnetic fusion reactor is optimised using a multidimensional optimisation algorithm. For the first time in such a study, the loss of heat due to turbulence is modelled at every stage using first-principles nonlinear simulations which accurately capture the turbulent cascade and large-scale zonal flows. The simulations utilise a novel approach, with gyrofluid treatment of the small-scale drift waves and gyrokinetic treatment of the large-scale zonal flows. A simple near-circular equilibrium with standard parameters is chosen as the initial condition. The figure of merit, fusion power per unit volume, is calculated, and then two control parameters, the elongation and triangularity of the outer flux surface, are varied, with the algorithm seeking to optimise the chosen figure of merit. A two-fold increase in the plasma power per unit volume is achieved by moving to higher elongation and strongly negative triangularity.Comment: 32 pages, 8 figures, accepted to JP

    Activation mechanisms in sodium-doped Silicon MOSFETs

    Full text link
    We have studied the temperature dependence of the conductivity of a silicon MOSFET containing sodium ions in the oxide above 20 K. We find the impurity band resulting from the presence of charges at the silicon-oxide interface is split into a lower and an upper band. We have observed activation of electrons from the upper band to the conduction band edge as well as from the lower to the upper band. A possible explanation implying the presence of Hubbard bands is given.Comment: published in J. Phys. : Condens. Matte

    Predicting Purchase Intent Using Pragmatic and Hedonic Kansei Engineering Scales: A Case Study of Kitchen Equipment in China

    Get PDF
    A Chinese premium kitchen equipment manufacturer was interested in knowing what their consumers liked about their product, and how they could use this to strengthen their market position. They wanted a set of repeatable scales that could be used to both evaluate their own products for future development and to benchmark competitors for sales predictions. To be successful, kitchen equipment should function perfectly, be easy to use and have emotional attributes that appeal to consumers. Kansei Engineering methods have previously been used to support the development of scales to improve the emotional response to such products. However within the Kitchen Equipment industry, there is rarely the time or resource available to implement a full and comprehensive Kansei Engineering analysis within a new product development process. We used a simplified Kansei Engineering process with two notable differences. To develop a set of useful scales we used a mix of hedonic and pragmatic adjectives and we used Kano analysis as a means to systematically reduce the number of adjectives. A factor analysis found four Kansei factors and scales were developed to measure them. The major factor was a Hedonic Scale. The next three factors measured more pragmatic attributes and specifically were: User Interface Quality, Smoke Extraction Quality and Ease of Cleaning. The four factors contributed to 70% of the variance. These factors can be used by the company as repeatable measurement scales to both evaluate their own products for future development and to benchmark competitors for sales predictions

    Distinguishing Among Strong Decay Models

    Get PDF
    Two competing models for strong hadronic decays, the 3P0^3P_0 and 3S1^3S_1 models, are currently in use. Attempts to rule out one or the other have been hindered by a poor understanding of final state interactions and by ambiguities in the treatment of relativistic effects. In this article we study meson decays in both models, focussing on certain amplitude ratios for which the relativistic uncertainties largely cancel out (notably the S/DS/D ratios in b1πωb_1\rightarrow\pi\omega and a1πρa_1\rightarrow\pi\rho), and using a Quark Born Formalism to estimate the final state interactions. We find that the 3P0^3P_0 model is strongly favoured. In addition, we predict a P/FP/F amplitude ratio of 1.6±.21.6\pm .2 for the decay π2πρ\pi_2\rightarrow\pi\rho. We also study the parameter-dependence of some individual amplitudes (as opposed to amplitude ratios), in an attempt to identify a ``best'' version of the 3P0^3P_0 model.Comment: 20 pages, uuencoded postscript file with 7 figures, MIT-CTP-2295; CMU-HEP94-1

    Stability of atomic clocks based on entangled atoms

    Full text link
    We analyze the effect of realistic noise sources for an atomic clock consisting of a local oscillator that is actively locked to a spin-squeezed (entangled) ensemble of NN atoms. We show that the use of entangled states can lead to an improvement of the long-term stability of the clock when the measurement is limited by decoherence associated with instability of the local oscillator combined with fluctuations in the atomic ensemble's Bloch vector. Atomic states with a moderate degree of entanglement yield the maximal clock stability, resulting in an improvement that scales as N1/6N^{1/6} compared to the atomic shot noise level.Comment: 4 pages, 2 figures, revtex

    Cerebral atrophy in mild cognitive impairment and Alzheimer disease: rates and acceleration.

    Get PDF
    OBJECTIVE: To quantify the regional and global cerebral atrophy rates and assess acceleration rates in healthy controls, subjects with mild cognitive impairment (MCI), and subjects with mild Alzheimer disease (AD). METHODS: Using 0-, 6-, 12-, 18-, 24-, and 36-month MRI scans of controls and subjects with MCI and AD from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, we calculated volume change of whole brain, hippocampus, and ventricles between all pairs of scans using the boundary shift integral. RESULTS: We found no evidence of acceleration in whole-brain atrophy rates in any group. There was evidence that hippocampal atrophy rates in MCI subjects accelerate by 0.22%/year2 on average (p = 0.037). There was evidence of acceleration in rates of ventricular enlargement in subjects with MCI (p = 0.001) and AD (p < 0.001), with rates estimated to increase by 0.27 mL/year2 (95% confidence interval 0.12, 0.43) and 0.88 mL/year2 (95% confidence interval 0.47, 1.29), respectively. A post hoc analysis suggested that the acceleration of hippocampal loss in MCI subjects was mainly driven by the MCI subjects that were observed to progress to clinical AD within 3 years of baseline, with this group showing hippocampal atrophy rate acceleration of 0.50%/year2 (p = 0.003). CONCLUSIONS: The small acceleration rates suggest a long period of transition to the pathologic losses seen in clinical AD. The acceleration in hippocampal atrophy rates in MCI subjects in the ADNI seems to be driven by those MCI subjects who concurrently progressed to a clinical diagnosis of AD
    corecore