47 research outputs found

    Altered translation of GATA1 in Diamond-Blackfan anemia

    Get PDF
    Ribosomal protein haploinsufficiency occurs in diverse human diseases including Diamond-Blackfan anemia (DBA)[superscript 1, 2], congenital asplenia[superscript 3] and T cell leukemia[superscript 4]. Yet, how mutations in genes encoding ubiquitously expressed proteins such as these result in cell-type– and tissue-specific defects remains unknown[superscript 5]. Here, we identify mutations in GATA1, encoding the critical hematopoietic transcription factor GATA-binding protein-1, that reduce levels of full-length GATA1 protein and cause DBA in rare instances. We show that ribosomal protein haploinsufficiency, the more common cause of DBA, can lead to decreased GATA1 mRNA translation, possibly resulting from a higher threshold for initiation of translation of this mRNA in comparison with other mRNAs. In primary hematopoietic cells from patients with mutations in RPS19, encoding ribosomal protein S19, the amplitude of a transcriptional signature of GATA1 target genes was globally and specifically reduced, indicating that the activity, but not the mRNA level, of GATA1 is decreased in patients with DBA associated with mutations affecting ribosomal proteins. Moreover, the defective hematopoiesis observed in patients with DBA associated with ribosomal protein haploinsufficiency could be partially overcome by increasing GATA1 protein levels. Our results provide a paradigm by which selective defects in translation due to mutations affecting ubiquitous ribosomal proteins can result in human disease.National Institutes of Health (U.S.) (Grant P01 HL32262)National Institutes of Health (U.S.) (Grant U54 HG003067-09

    Comparative Structural Analysis of Human DEAD-Box RNA Helicases

    Get PDF
    DEAD-box RNA helicases play various, often critical, roles in all processes where RNAs are involved. Members of this family of proteins are linked to human disease, including cancer and viral infections. DEAD-box proteins contain two conserved domains that both contribute to RNA and ATP binding. Despite recent advances the molecular details of how these enzymes convert chemical energy into RNA remodeling is unknown. We present crystal structures of the isolated DEAD-domains of human DDX2A/eIF4A1, DDX2B/eIF4A2, DDX5, DDX10/DBP4, DDX18/myc-regulated DEAD-box protein, DDX20, DDX47, DDX52/ROK1, and DDX53/CAGE, and of the helicase domains of DDX25 and DDX41. Together with prior knowledge this enables a family-wide comparative structural analysis. We propose a general mechanism for opening of the RNA binding site. This analysis also provides insights into the diversity of DExD/H- proteins, with implications for understanding the functions of individual family members

    Identifying and Validating Tankyrase Binders and Substrates: A Candidate Approach.

    Get PDF
    The poly(ADP-ribose)polymerase (PARP) enzyme tankyrase (TNKS/ARTD5, TNKS2/ARTD6) uses its ankyrin repeat clusters (ARCs) to recognize degenerate peptide motifs in a wide range of proteins, thereby recruiting such proteins and their complexes for scaffolding and/or poly(ADP-ribosyl)ation. Here, we provide guidance for predicting putative tankyrase-binding motifs, based on the previously delineated peptide sequence rules and existing structural information. We present a general method for the expression and purification of tankyrase ARCs from Escherichia coli and outline a fluorescence polarization assay to quantitatively assess direct ARC-TBM peptide interactions. We provide a basic protocol for evaluating binding and poly(ADP-ribosyl)ation of full-length candidate interacting proteins by full-length tankyrase in mammalian cells

    Active Pin1 is a key target of all-trans retinoic acid in acute promyelocytic leukemia and breast cancer

    Get PDF
    A common key regulator of oncogenic signaling pathways in multiple tumor types is the unique isomerase Pin1. However, available Pin1 inhibitors lack the required specificity and potency. Using mechanism-based screening, here we find that all-trans retinoic acid (ATRA)--a therapy for acute promyelocytic leukemia (APL) that is considered the first example of targeted therapy in cancer, but its drug target remains elusive--inhibits and degrades active Pin1 selectively in cancer cells by directly binding to the substrate phosphate- and proline-binding pockets in the Pin1 active site. ATRA-induced Pin1 ablation degrades the fusion oncogene PML-RARα and treats APL in cell and animal models and human patients. ATRA-induced Pin1 ablation also inhibits triple negative breast cancer cell growth in human cells and in animal models by acting on many Pin1 substrate oncogenes and tumor suppressors. Thus, ATRA simultaneously blocks multiple Pin1-regulated cancer-driving pathways, an attractive property for treating aggressive and drug-resistant tumors

    EPR-Untersuchungen an SMSI-Katalysatoren Schlussbericht

    No full text
    SIGLEAvailable from TIB Hannover: DtF QN1(59,7) / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekBundesministerium fuer Bildung, Wissenschaft, Forschung und Technologie, Bonn (Germany)DEGerman

    Continuity and Change in Corporate Governance: comparing Germany and Japan

    No full text
    Germany and Japan are often seen deviating from an economic model of shareholder control and thereby as being similar by virtue of their mutual contrast with the US. Given the common challenges for bank-based and stakeholder-oriented models of corporate governance, Germany-Japan comparison seems particularly timely. This article provides an introductory overview and analysis for the Special Issue by comparing recent developments in corporate law reform, banking and finance, and employment in Germany and Japan. While rejecting arguments for international convergence, we discuss this evidence of simultaneous continuity and change in corporate governance as a potential form of hybridisation of national models or renegotiation of stakeholder coalitions in German and Japanese firms. One consequence is the growing diversity of firm-level corporate governance practices within national systems. Copyright Blackwell Publishing Ltd 2005.

    A Review of Urban Water Body Challenges and Approaches: (1) Rehabilitation and Remediation

    Get PDF
    We review how urbanization alters aquatic ecosystems, as well as actions that managers can take to remediate urban waters. Urbanization affects streams by fundamentally altering longitudinal and lateral processes that in turn alter hydrology, habitat, and water chemistry; these effects create physical and chemical stressors that in turn affect the biota. Urban streams often suffer from multiple stressor effects that have collectively been termed an “urban stream syndrome,” in which no single factor dominates degraded conditions. Resource managers have multiple ways of combating the urban stream syndrome. These approaches range from whole-watershed protection to reach-scale habitat rehabilitation, but the prescription must be matched to the scale of the factors that are causing the problem, and results will likely not be immediate because of lengthy recovery times. Although pristine or reference conditions are far from attainable, urban stream rehabilitation is a worthy goal because appropriate actions can provide ecosystem improvements as well as increased ecosystem service benefits for human society
    corecore