10,429 research outputs found
Rayleigh-Brillouin light scattering spectroscopy of nitrous oxide (NO)
High signal-to-noise and high-resolution light scattering spectra are
measured for nitrous oxide (NO) gas at an incident wavelength of 403.00 nm,
at 90 scattering, at room temperature and at gas pressures in the range
bar. The resulting Rayleigh-Brillouin light scattering spectra are
compared to a number of models describing in an approximate manner the
collisional dynamics and energy transfer in this gaseous medium of this
polyatomic molecular species. The Tenti-S6 model, based on macroscopic gas
transport coefficients, reproduces the scattering profiles in the entire
pressure range at less than 2\% deviation at a similar level as does the
alternative kinetic Grad's 6-moment model, which is based on the internal
collisional relaxation as a decisive parameter. A hydrodynamic model fails to
reproduce experimental spectra for the low pressures of 0.5-1 bar, but yields
very good agreement (\%) in the pressure range bar. While these
three models have a different physical basis the internal molecular relaxation
derived can for all three be described in terms of a bulk viscosity of Pas. A 'rough-sphere' model, previously
shown to be effective to describe light scattering in SF gas, is not found
to be suitable, likely in view of the non-sphericity and asymmetry of the N-N-O
structured linear polyatomic molecule
Analysis of Mesostructure Unit Cells Comprised of Octet-truss Structures
A unit truss finite element analysis method allowing non-linear deformation is employed to
analyze a unit cell comprised of n
3
octet-truss structures for their stiffness and displacement
compared to their relative density under loading. Axial, bending, shearing, and torsion effects are
included in the analysis for each strut in the octet-truss structure which is then related to the
mesostructure level (unit cell). The versatility of additive manufacturing allows for the
fabrication of these complex unit cell truss structures which can be used as building blocks for
macro-scale geometries. The finite element calculations are compared to experimental results for
samples manufactured on a Stereolithography Apparatus (SLA) out of a standard resin.Mechanical Engineerin
First-principles predicted low-energy structures of NaSc(BH4)4
According to previous interpretations of experimental data, sodium-scandium
double-cation borohydride NaSc(BH) crystallizes in the crystallographic
space group where each sodium (scandium) atom is surrounded by six
scandium (sodium) atoms. A careful investigation of this phase based on
\textit{ab initio} calculations indicates that the structure is dynamically
unstable and gives rise to an energetically and dynamically more favorable
phase with symmetry and nearly identical x-ray diffraction pattern. By
additionally performing extensive structural searches with the minima-hopping
method we discover a class of new low-energy structures exhibiting a novel
structural motif in which each sodium (scandium) atom is surrounded by four
scandium (sodium) atoms arranged at the corners of either a rectangle with
nearly equal sides or a tetrahedron. These new phases are all predicted to be
insulators with band gaps of eV. Finally, we estimate the influence
of these structures on the hydrogen-storage performance of NaSc(BH).Comment: Version publishe
Frustrated multiband superconductivity
We show that a clean multiband superconductor may display one or several
phase transitions with increasing temperature from or to frustrated
configurations of the relative phases of the superconducting order parameters.
These transitions may occur when more than two bands are involved in the
formation of the superconducting phase and when the number of repulsive
interband interactions is odd. These transitions are signalled by slope changes
in the temperature dependence of the superconducting gaps.Comment: 5 pages, 3 figure
- …