2,446 research outputs found

    Electromagnetic Compression as Preforming Operation for Tubular Hydroforming Parts

    Get PDF
    With the aim to extent the forming limits of tube hydroforming a concept of using a previous electromagnetic compression operation will be introduced. One important limit for the possibilities of tube hydroforming is set by the initial circumference and the maximum tangential strain of the used material, whereby the initial circumference is typically determined by the smallest local circumference of the workpiece. The application of an appropriate contoured preform makes it possible to use tubes with a larger initial circumference. In the paper the investigation of the suitability of electromagnetic tube compression for the production of such a preform will be presented. The valuation is based on geometric criteria and material properties of the resulting preform which are strongly influenced by the process parameters. The discussed aspects are the roundness of the preform and the strain hardening of the material

    Effects of Electromagnetic and Hydraulic Forming Processes on the Microstructure of the Material

    Get PDF
    Over the past few years, various papers have been published in the field of high speed forming processes. The focus was mainly on the technological aspects of metal forming, however. Therefore, the present contribution puts an emphasis on transmission electron microscopy analyses. The present research work describes the effects of the two forming processes upon the aluminum microstructure and their influence on the material properties. The objective is to characterise the micro processes determining the plastic deformation with both forming velocities the electromagnetic high speed forming process with strain rates of 10,000 s^(-1) and the bulge test, having deformation rates of less than 0.1 s^(-1) as a quasistatic process. In this article sheet metals out of technical pure aluminum 99.5% with a thickness of 1 mm were investigated. To this end, sample specimens were taken from manufactured workpieces along the radius at various distances from the center. Because of the similarity of the forming paths, two places on the specimens manufactured at different forming rates were evaluated and compared to each other: immediately next to the blankholder and from the area of maximum strain. Metallographic tests of the structures, the sheet thickness, and the micro hardness distribution of the initial state and the formed sheet metals were executed in advance

    Localization of superconductivity in superconductor-electromagnet hybrids

    Full text link
    We investigate the nucleation of superconductivity in a superconducting Al strip under the influence of the magnetic field generated by a current-carrying Nb wire, perpendicularly oriented and located underneath the strip. The inhomogeneous magnetic field, induced by the Nb wire, produces a spatial modulation of the critical temperature T_c, leading to a controllable localization of the superconducting order parameter (OP) wave function. We demonstrate that close to the phase boundary T_c(B_ext) the localized OP solution can be displaced reversibly by either applying an external perpendicular magnetic field B_ext or by changing the amplitude of the inhomogeneous field.Comment: 10 pages, 6 figure

    Investigation of the Process Chain Bending-Electromagnetic compression-Hydroforming on the Basis of an Industrial Demonstrator Part

    Get PDF
    The increasing significance of lightweight construction concepts requires innovative and adapted production technologies and process chains for the manufacturing of complex parts made of typical lightweight materials. The feasibility and potential of such a process chain consisting of the steps Bending - Electromagnetic compression (EMC) Hydroforming is shown in the present paper on the basis of a demonstrator part similar to a structural component from the automotive industry. Here, special focus is put on the requirements on the production steps and the workpiece properties. Furthermore, the development and testing of EMC-equipment that is optimally adapted to the special forming task is described

    Mesoscopic cross-film cryotrons: Vortex trapping and dc-Josephson-like oscillations of the critical current

    Full text link
    We investigate theoretically and experimentally the transport properties of a plain Al superconducting strip in the presence of a single straight current-carrying wire, oriented perpendicular to the superconducting strip. It is well known that the critical current of the superconducting strip, Ic, in such cryotron--like system can be tuned by changing the current in the control wire, Iw. We demonstrated that the discrete change in the number of the pinned vortices/antivortices inside the narrow and long strip nearby the current-carrying wire results in a peculiar oscillatory dependence of Ic on Iw.Comment: 8 pages, 8 figure

    Intrinsic Josephson Effect in the Layered Two-dimensional t-J Model

    Full text link
    The intrinsic Josephson effect in the high-Tc superconductors is studied using the layered two-dimensional t-J model. The d.c.Josephson current which flows perpendicular to the t-J planes is obtained within the mean-field approximation and the Gutzwiller approximation. We find that the Josephson current has its maximum near the optimum doping region as a function of the doping rate.Comment: 4 pages, 3 figure

    Perceiving locations of moving objects across eye blinks

    Get PDF
    Eye blinks cause disruption of visual input that generally goes unnoticed. It is thought that the brain uses active suppression to prevent awareness of the gaps, but it is unclear how suppression would affect the perception of dynamic events, when visual input changes across the blink. Here we addressed this question by studying the perception of moving objects around eye blinks. In Experiment 1 (N = 16), we observed that when motion terminates during a blink, the last perceived position is shifted forward from its actual last position. In Experiment 2 (N = 8), we found that motion trajectories were perceived as more continuous when the object jumped backward during the blink, cancelling a fraction of the space it travelled. This suggests subjective underestimation of blink duration. These results reveal the strategies used by the visual system to compensate for disruptions and maintain perceptual continuity: time elapsed during eye blinks is perceptually compressed and filled with extrapolated information

    Strength of Tubular Joints Made by Electromagnetic Compression at Quasistatic and Cyclic Loading

    Get PDF
    Electromagnetic compression of tubular profiles with high electrical conductivity is an innovative joining process for lightweight structures. The components are joined using pulsed magnetic fields which apply radial pressures of up to 200 MPa to tubular workpieces, causing a symmetric reduction of the diameter with typical strain rates of up to 10^4 sec^(-1). This process avoids any surface damage of the workpiece because there is no contact between component and forming tool. The strength of electromagnetically formed joints made of aluminum tubes under cyclic loads is essential to establish electromagnetic forming in automotive structures. In the present paper, the quasi-static performance of tubular joints made by electromagnetic compression produced of different mandrel materials will be analyzed as to the influence of process parameters. Therefore, experimental investigations on aluminum tubes (AA6060) joined on mandrels made of different aluminum, copper, and steel alloys were carried out. Furthermore, the behavior of joints with both mandrel and tube made of AA6060 at swelling cyclic loads (R = δ_ min / δ_ max =0) has been evaluated

    Vortex configurations and critical parameters in superconducting thin films containing antidot arrays: Nonlinear Ginzburg-Landau theory

    Full text link
    Using the non-linear Ginzburg-Landau (GL) theory, we obtain the possible vortex configurations in superconducting thin films containing a square lattice of antidots. The equilibrium structural phase diagram is constructed which gives the different ground-state vortex configurations as function of the size and periodicity of the antidots for a given effective GL parameter κ∗\kappa^{*}. Giant-vortex states, combination of giant- and multi-vortex states, as well as symmetry imposed vortex-antivortex states are found to be the ground state for particular geometrical parameters of the sample. The antidot occupation number non_o is calculated as a function of related parameters and comparison with existing expressions for the saturation number nsn_s and with experimental results is given. For a small radius of antidots a triangular vortex lattice is obtained, where some of the vortices are pinned by the antidots and some of them are located between them. Transition between the square pinned and triangular vortex lattices is given for different values of the applied field. The enhanced critical current at integer and rational matching fields is found, where the level of enhancement at given magnetic field directly depends on the vortex-occupation number of the antidots. For certain parameters of the antidot lattice and/or temperature the critical current is found to be larger for higher magnetic fields. Superconducting/normal H−TH-T phase boundary exhibits different regimes as antidots are made larger, and we transit from a plain superconducting film to a thin-wire superconducting network. Presented results are in good agreement with available experiments and suggest possible new experiments.Comment: 15 pages and 20 figure

    Process Investigation of Tube Expansion by Gas Detonation

    Get PDF
    The present paper deals with the expansion of tubes by direct application of gas detonation waves, i.e. the gas is both pressure medium and energy source. After an introduction to gas detonation forming, measurements of the motion process and the internal pressures are presented. Results of free expansion and of forming into a die are thoroughly studied and compared to the results of quasi-static burst tests and hydroforming. Using pure aluminum Al99.5 and a medium strength alloy AlMgSi1, expansions by 25 % and 20 % respectively are obtained. A simulation delivers details on the deformation process and specially prepared probes of high-speed tension tests give new insight into metallographic material behavior at different strain rates
    • …
    corecore