10,103 research outputs found

    A remark on kinks and time machines

    Get PDF
    We describe an elementary proof that a manifold with the topology of the Politzer time machine does not admit a nonsingular, asymptotically flat Lorentz metric.Comment: 4 page

    Gravitational Instantons, Confocal Quadrics and Separability of the Schr\"odinger and Hamilton-Jacobi equations

    Full text link
    A hyperk\"ahler 4-metric with a triholomorphic SU(2) action gives rise to a family of confocal quadrics in Euclidean 3-space when cast in the canonical form of a hyperk\"ahler 4-metric metric with a triholomorphic circle action. Moreover, at least in the case of geodesics orthogonal to the U(1) fibres, both the covariant Schr\"odinger and the Hamilton-Jacobi equation is separable and the system integrable.Comment: 10 pages Late

    Time-Dependent Multi-Centre Solutions from New Metrics with Holonomy Sim(n-2)

    Full text link
    The classifications of holonomy groups in Lorentzian and in Euclidean signature are quite different. A group of interest in Lorentzian signature in n dimensions is the maximal proper subgroup of the Lorentz group, SIM(n-2). Ricci-flat metrics with SIM(2) holonomy were constructed by Kerr and Goldberg, and a single four-dimensional example with a non-zero cosmological constant was exhibited by Ghanam and Thompson. Here we reduce the problem of finding the general nn-dimensional Einstein metric of SIM(n-2) holonomy, with and without a cosmological constant, to solving a set linear generalised Laplace and Poisson equations on an (n-2)-dimensional Einstein base manifold. Explicit examples may be constructed in terms of generalised harmonic functions. A dimensional reduction of these multi-centre solutions gives new time-dependent Kaluza-Klein black holes and monopoles, including time-dependent black holes in a cosmological background whose spatial sections have non-vanishing curvature.Comment: Typos corrected; 29 page

    Branes as BIons

    Full text link
    A BIon may be defined as a finite energy solution of a non-linear field theory with distributional sources. By contrast a soliton is usually defined to have no sources. I show how harmonic coordinates map the exteriors of the topologically and causally non-trivial spacetimes of extreme p-branes to BIonic solutions of the Einstein equations in a topologically trivial spacetime in which the combined gravitational and matter energy momentum is located on distributional sources. As a consequence the tension of BPS p-branes is classically unrenormalized. The result holds equally for spacetimes with singularities and for those, like the M-5-brane, which are everywhere singularity free.Comment: Latex, 9 pages, no figure

    Extended uncertainty principle and the geometry of (anti)-de Sitter space

    Full text link
    It has been proposed that on (anti)-de Sitter background, the Heisenberg uncertainty principle should be modified by the introduction of a term proportional to the cosmological constant. We show that this modification of the uncertainty principle can be derived straightforwardly from the geometric properties of (anti)-de Sitter spacetime. We also discuss the connection between the so-called extended generalized uncertainty principle and triply special relativity.Comment: 8 pages, plain TeX, references adde

    The Action of Instantons with Nut Charge

    Full text link
    We examine the effect of a non-trivial nut charge on the action of non-compact four-dimensional instantons with a U(1) isometry. If the instanton action is calculated by dimensionally reducing along the isometry, then the nut charge is found to make an explicit non-zero contribution. For metrics satisfying AF, ALF or ALE boundary conditions, the action can be expressed entirely in terms of quantities (including the nut charge) defined on the fixed point set of the isometry. A source (or sink) of nut charge also implies the presence of a Misner string coordinate singularity, which will have an important effect on the Hamiltonian of the instanton.Comment: 25 page

    Bohm and Einstein-Sasaki Metrics, Black Holes and Cosmological Event Horizons

    Get PDF
    We study physical applications of the Bohm metrics, which are infinite sequences of inhomogeneous Einstein metrics on spheres and products of spheres of dimension 5 <= d <= 9. We prove that all the Bohm metrics on S^3 x S^2 and S^3 x S^3 have negative eigenvalue modes of the Lichnerowicz operator and by numerical methods we establish that Bohm metrics on S^5 have negative eigenvalues too. We argue that all the Bohm metrics will have negative modes. These results imply that higher-dimensional black-hole spacetimes where the Bohm metric replaces the usual round sphere metric are classically unstable. We also show that the stability criterion for Freund-Rubin solutions is the same as for black-hole stability, and hence such solutions using Bohm metrics will also be unstable. We consider possible endpoints of the instabilities, and show that all Einstein-Sasaki manifolds give stable solutions. We show how Wick rotation of Bohm metrics gives spacetimes that provide counterexamples to a strict form of the Cosmic Baldness conjecture, but they are still consistent with the intuition behind the cosmic No-Hair conjectures. We show how the Lorentzian metrics may be created ``from nothing'' in a no-boundary setting. We argue that Lorentzian Bohm metrics are unstable to decay to de Sitter spacetime. We also argue that noncompact versions of the Bohm metrics have infinitely many negative Lichernowicz modes, and we conjecture a general relation between Lichnerowicz eigenvalues and non-uniqueness of the Dirichlet problem for Einstein's equations.Comment: 53 pages, 11 figure
    corecore