51 research outputs found

    Inhibition of Wnt/beta-Catenin Signaling by p38 MAP Kinase Inhibitors Is Explained by Cross-Reactivity with Casein Kinase I delta/epsilon

    Get PDF
    SummaryWnt/β-catenin signaling plays essential roles in embryonic development, adult stem cell maintenance, and disease. Screening of a small molecule compound library with a β-galactosidase fragment complementation assay measuring β-catenin nuclear entry revealed TAK-715 and AMG-548 as inhibitors of Wnt-3a-stimulated β-catenin signaling. TAK-715 and AMG-548 are inhibitors of p38 mitogen-activated protein kinase, which has been suggested to regulate activation of Wnt/β-catenin signaling. However, two highly selective and equally potent p38 inhibitors, VX-745 and Scio-469, did not inhibit Wnt-3a-stimulated β-catenin signaling. Profiling of TAK-715 and AMG-548 against a panel of over 200 kinases revealed cross-reactivity with casein kinase Iδ and ɛ, which are known activators of Wnt/β-catenin signaling. Our data demonstrate that this cross-reactivity accounts for the inhibition of β-catenin signaling by TAK-715 and AMG-548 and argue against a role of p38 in Wnt/β-catenin signaling

    Intermittent pacing therapy favorably modulates infarct remodeling

    Get PDF
    textabstractDespite early revascularization, remodeling and dysfunction of the left ventricle (LV) after acute myocardial infarction (AMI) remain important therapeutic targets. Intermittent pacing therapy (IPT) of the LV can limit infarct size, when applied during early reperfusion. However, the effects of IPT on post-AMI LV remodeling and infarct healing are unknown. We therefore investigated the effects of IPT on global LV remodeling and infarct geometry in swine with a 3-day old AMI. For this purpose, fifteen pigs underwent 2 h ligation of the left circumflex coronary artery followed by reperfusion. An epicardial pacing lead was implanted in the peri-infarct zone. After three days, global LV remodeling and infarct geometry were assessed using magnetic resonance imaging (MRI). Animals were stratified into MI control and IPT groups. Thirty-five days post-AMI, follow-up MRI was obtained and myofibroblast content, markers of extracellular matrix (ECM) turnover and Wnt/frizzled signaling in infarct and non-infarct control tissue were studied. Results showed that IPT had no significant effect on global LV remodeling, function or infarct mass, but modulated infarct healing. In MI control pigs, infarct mass reduction was principally due to a 26.2 ± 4.4% reduction in infarct thickness (P ≤ 0.05), whereas in IPT pigs it was mainly due to a 35.7 ± 4.5% decrease in the number of infarct segments (P ≤ 0.05), with no significant change in infarct thickness. Myofibroblast content of the infarct zone was higher in IPT (10.9 ± 2.1%) compared to MI control (5.4 ± 1.6%; P ≤ 0.05). Higher myofibroblast presence did not coincide with alterations in expression of genes involved in ECM turnover or Wnt/frizzled signaling at 5 weeks follow-up. Taken together, IPT limited infarct expansion and altered infarct composition, showing that IPT influences remodeling of the infarct zone, likely by increasing regional myofibroblast content

    Discovery of Novel Small Molecule Activators of β-Catenin Signaling

    Get PDF
    Wnt/β-catenin signaling plays a major role in embryonic development and adult stem cell maintenance. Reduced activation of the Wnt/β-catenin pathway underlies neurodegenerative disorders and aberrations in bone formation. Screening of a small molecule compound library with a β-galactosidase fragment complementation assay measuring β-catenin nuclear entry revealed bona fide activators of β-catenin signaling. The compounds stabilized cytoplasmic β-catenin and activated β–catenin-dependent reporter gene activity. Although the mechanism through which the compounds activate β-catenin signaling has yet to be determined, several key regulators of Wnt/β-catenin signaling, including glycogen synthase kinase 3 and Frizzled receptors, were excluded as the molecular target. The compounds displayed remarkable selectivity, as they only induced β-catenin signaling in a human osteosarcoma U2OS cell line and not in a variety of other cell lines examined. Our data indicate that differences in cellular Wnt/β-catenin signaling machinery can be exploited to identify cell type-specific activators of Wnt/β-catenin signaling

    Thrombospondins in the heart: potential functions in cardiac remodeling

    Get PDF
    Cardiac remodeling after myocardial injury involves inflammation, angiogenesis, left ventricular hypertrophy and matrix remodeling. Thrombospondins (TSPs) belong to the group of matricellular proteins, which are non-structural extracellular matrix proteins that modulate cell–matrix interactions and cell function in injured tissues or tumors. They interact with different matrix and membrane-bound proteins due to their diverse functional domains. That the expression of TSPs strongly increases during cardiac stress or injury indicates an important role for them during cardiac remodeling. Recently, the protective properties of TSP expression against heart failure have been acknowledged. The current review will focus on the biological role of TSPs in the ischemic and hypertensive heart, and will describe the functional consequences of TSP polymorphisms in cardiac disease

    beta-Galactosidase enzyme fragment complementation for the measurement of Wnt/beta-catenin signaling

    Get PDF
    Wnt/beta-catenin signaling is an important regulator of cell polarity, proliferation, and stem cell maintenance during development and adulthood. Wnt proteins induce the nuclear accumulation of beta-catenin, which regulates the expression of Wnt-responsive genes through association with TCF/LEF transcription factors. Aberrant Wnt/beta-catenin signaling has been implicated in a plethora of pathologies and, most notably, underlies initiation and expansion of several cancers. Here, we apply enzyme fragment complementation to measure the nuclear accumulation of beta-catenin. beta-catenin was tagged with a peptide fragment of beta-galactosidase and transfected into cells expressing a corresponding deletion mutant of the enzyme exclusively in the nucleus. Stimulation of the cells with recombinant Wnt-3a restored beta-galactosidase activity in a dose-dependent manner with nanomolar potency. Using the assay, we confirmed that Wnt-5a represses beta-catenin-driven reporter gene activity downstream of nuclear entry of beta-catenin. In addition, we tested a library of >2000 synthetic chemical compounds for their ability to induce beta-catenin nuclear accumulation. The immunosuppressive protein kinase C inhibitor sotrastaurin (AEB-071) was identified as an activator of Wnt/beta-catenin signaling at micromolar concentrations. It was confirmed that the compound stabilizes endogenous beta-catenin protein and can induce TCF/LEF-dependent gene transcription. Subsequent biochemical profiling of >200 kinases revealed both isoforms of glycogen synthase kinase 3, as previously unappreciated targets of sotrastaurin. We show that the beta-catenin nuclear accumulation assay contributes to our knowledge of molecular interactions within the Wnt/beta-catenin pathway and can be used to find new therapeutics targeting Wnt/beta-catenin signaling.-Verkaar, F., Blankesteijn, W. M., Smits, J. F. M., Zaman, G. J. R. beta-Galactosidase enzyme fragment complementation for the measurement of Wnt/beta-catenin signaling. FASEB J. 24, 1205-1217 (2010). www.fasebj.or
    • …
    corecore