16,323 research outputs found

    Signatures of orbital loop currents in the spatially resolved local density of states

    Full text link
    Polarized neutron scattering measurements have suggested that intra-unit cell antiferromagnetism may be associated with the pseudogap phase. Assuming that loop current order is responsible for the observed magnetism, we calculate some signatures of such circulating currents in the local density of states around a single non-magnetic impurity in a coexistence phase with superconductivity. We find a distinct C4 symmetry breaking near the disorder which is also detectable in the resulting quasi-particle interference patterns.Comment: 5 pages, 3 figure

    Robustness of the nodal d-wave spectrum to strongly fluctuating competing order

    Full text link
    We resolve an existing controversy between, on the one hand, convincing evidence for the existence of competing order in underdoped cuprates, and, on the other hand, spectroscopic data consistent with a seemingly homogeneous d-wave superconductor in the very same compounds. Specifically, we show how short-range fluctuations of the competing order essentially restore the nodal d-wave spectrum from the qualitatively distinct folded dispersion resulting from homogeneous coexisting phases. The signatures of the fluctuating competing order can be found mainly in a splitting of the antinodal quasi-particles and, depending of the strength of the competing order, also in small induced nodal gaps as found in recent experiments on underdoped La{2-x}SrxCuO4.Comment: 5 pages, 4 figure

    Turbine blade and vane heat flux sensor development, phase 2

    Get PDF
    The development of heat flux sensors for gas turbine blades and vanes and the demonstration of heat transfer measurement methods are reported. The performance of the heat flux sensors was evaluated in a cylinder in cross flow experiment and compared with two other heat flux measurement methods, the slug calorimeter and a dynamic method based on fluctuating gas and surface temperature. Two cylinders, each instrumented with an embedded thermocouple sensor, a Gardon gauge, and a slug calorimeter, were fabricated. Each sensor type was calibrated using a quartz lamp bank facility. The instrumented cylinders were then tested in an atmospheric pressure combustor rig at conditions up to gas stream temperatures of 1700K and velocities to Mach 0.74. The test data are compared to other measurements and analytical prediction

    Development of advanced high-temperature heat flux sensors. Phase 2: Verification testing

    Get PDF
    A two-phase program is conducted to develop heat flux sensors capable of making heat flux measurements throughout the hot section of gas turbine engines. In Phase 1, three types of heat flux sensors are selected; embedded thermocouple, laminated, and Gardon gauge sensors. A demonstration of the ability of these sensors to operate in an actual engine environment is reported. A segmented liner of each of two combustors being used in the Broad Specification Fuels Combustor program is instrumented with the three types of heat flux sensors then tested in a high pressure combustor rig. Radiometer probes are also used to measure the radiant heat loads to more fully characterize the combustor environment. Test results show the heat flux sensors to be in good agreement with radiometer probes and the predicted data trends. In general, heat flux sensors have strong potential for use in combustor development programs

    The c axis optical conductivity of layered systems in the superconducting state

    Full text link
    In this paper, we discuss the c axis optical conductivity Re [sigma_c(omega)] in the high T_c superconductors, in the superconducting state. The basic premise of this work is that electrons travelling along the c axis between adjacent CuO_2 layers must pass through several intervening layers. In earlier work we found that, for weak inter-layer coupling, it is preferable for electrons to travel along the c axis by making a series of interband transitions rather than to stay within a single (and very narrow) band. Moreover, we found that many of the properties of the normal state optical conductivity, including the pseudogap could be explained by interband transitions. In this work we examine the effect of superconductivity on the interband conductivity. We find that, while the onset of superconductivity is clearly evident in the spectrum, there is no clear signature of the symmetry of the superconducting order parameter.Comment: 6 pages, 4 figure

    Many-Impurity Effects in Fourier Transform Scanning Tunneling Spectroscopy

    Full text link
    Fourier transform scanning tunneling spectroscopy (FTSTS) is a useful technique for extracting details of the momentum-resolved electronic band structure from inhomogeneities in the local density of states due to disorder-related quasiparticle scattering. To a large extent, current understanding of FTSTS is based on models of Friedel oscillations near isolated impurities. Here, a framework for understanding many-impurity effects is developed based on a systematic treatment of the variance Delta rho^2(q,omega) of the Fourier transformed local density of states rho(q,\omega). One important consequence of this work is a demonstration that the poor signal-to-noise ratio inherent in rho(q,omega) due to randomness in impurity positions can be eliminated by configuration averaging Delta rho^2(q,omega). Furthermore, we develop a diagrammatic perturbation theory for Delta rho^2(q,omega) and show that an important bulk quantity, the mean-free-path, can be extracted from FTSTS experiments.Comment: 7 pages, 5 figures. A version of the paper with high resolution, colour figures is available at http://www.trentu.ca/physics/batkinson/FTSTS.ps.gz minor revisions in response to refree report + figure 5 is modifie

    A Comparison of Surface Acoustic Wave Modeling Methods

    Get PDF
    Surface Acoustic Wave (SAW) technology is low cost, rugged, lightweight, extremely low power and can be used to develop passive wireless sensors. For these reasons, NASA is investigating the use of SAW technology for Integrated Vehicle Health Monitoring (IVHM) of aerospace structures. To facilitate rapid prototyping of passive SAW sensors for aerospace applications, SAW models have been developed. This paper reports on the comparison of three methods of modeling SAWs. The three models are the Impulse Response Method a first order model, and two second order matrix methods; the conventional matrix approach, and a modified matrix approach that is extended to include internal finger reflections. The second order models are based upon matrices that were originally developed for analyzing microwave circuits using transmission line theory. Results from the models are presented with measured data from devices

    Frequency Domain Modeling of SAW Devices

    Get PDF
    New SAW sensors for integrated vehicle health monitoring of aerospace vehicles are being investigated. SAW technology is low cost, rugged, lightweight, and extremely low power. However, the lack of design tools for MEMS devices in general, and for Surface Acoustic Wave (SAW) devices specifically, has led to the development of tools that will enable integrated design, modeling, simulation, analysis and automatic layout generation of SAW devices. A frequency domain model has been created. The model is mainly first order, but it includes second order effects from triple transit echoes. This paper presents the model and results from the model for a SAW delay line device
    corecore