137 research outputs found

    Whole Genome Analysis of a Schistosomiasis-Transmitting Freshwater Snail.

    Get PDF
    Biomphalaria snails are instrumental in transmission of the human blood fluke Schistosoma mansoni. With the World Health Organization\u27s goal to eliminate schistosomiasis as a global health problem by 2025, there is now renewed emphasis on snail control. Here, we characterize the genome of Biomphalaria glabrata, a lophotrochozoan protostome, and provide timely and important information on snail biology. We describe aspects of phero-perception, stress responses, immune function and regulation of gene expression that support the persistence of B. glabrata in the field and may define this species as a suitable snail host for S. mansoni. We identify several potential targets for developing novel control measures aimed at reducing snail-mediated transmission of schistosomiasis

    The social relations of health care and household resource allocation in neoliberal Nicaragua

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>With the transition to neoliberalism, Nicaragua's once-critically acclaimed health care services have substantially diminished. Local level social formations have been under pressure to try to bridge gaps as the state's role in the provision of health care and other vital social services has decreased. This paper presents a case study of how global and national health policies reverberated in the social relations of an extended network of female kin in a rural community during late 2002 - 2003.</p> <p>Methods</p> <p>The qualitative methods used in this ethnographic study included semi-structured interviews completed during bi-weekly visits to 51 households, background interviews with 20 lay and professional health practitioners working in the public and private sectors, and participant-observation conducted in the region's government health centers. Interviews and observational field notes were manually coded and iteratively reviewed to identify and conceptually organize emergent themes. Three households of extended kin were selected from the larger sample to examine as a case study.</p> <p>Results</p> <p>The ongoing erosion of vital services formerly provided by the public sector generated considerable frustration and tension among households, networks of extended kin, and neighbors. As resource allocations for health care seeking and other needs were negotiated within and across households, longstanding ideals of reciprocal exchange persisted, but in conditions of poverty, expectations were often unfulfilled, exposing the tension between the need for social support, versus the increasingly oppositional positioning of social network members as sources of competition for limited resources.</p> <p>Conclusions</p> <p>In compliance with neoliberal structural adjustment policies mandated by multilateral and bilateral agencies, government-provided health care services have been severely restricted in Nicaragua. As the national safety net for health care has been eroded, the viability of local level social formations and their ability to respond to struggles collectively has been put at risk as well. Bi-lateral and multilateral agencies need to take into account local needs and demands, and implement policies in a manner that respects national laws, and protects both the physical and social well-being of individuals.</p

    Interactions between Natural Populations of Human and Rodent Schistosomes in the Lake Victoria Region of Kenya: A Molecular Epidemiological Approach

    Get PDF
    One of the world's most prevalent neglected diseases is schistosomiasis, which infects approximately 200 million people worldwide. Schistosoma mansoni is transmitted to humans by skin penetration by free-living larvae that develop in freshwater snails. The origin of this species is East Africa, where it coexists with its sister species, S. rodhaini. Interactions between these species potentially influence their epidemiology, ecology, and evolutionary biology, because they infect the same species of hosts and can hybridize. Over two years, we examined their distribution in Kenya to determine their degree of overlap geographically, within snail hosts, and in the water column as infective stages. Both species were spatially and temporally patchy, although S. mansoni was eight times more common than S. rodhaini. Both species overlap in the time of day they were present in the water column, which increases the potential for the species to coinfect the same host and interbreed. Peak infective time for S. mansoni was midday and dawn and dusk for S. rodhaini. Three snails were coinfected, which was more common than expected by chance. These findings indicate a lack of obvious isolating mechanisms to prevent hybridization, raising the intriguing question of how the two species retain separate identities

    Effects of Cu/Zn Superoxide Dismutase (sod1) Genotype and Genetic Background on Growth, Reproduction and Defense in Biomphalaria glabrata

    Get PDF
    Resistance of the snail Biomphalaria glabrata to the trematode Schistosoma mansoni is correlated with allelic variation at copper-zinc superoxide dismutase (sod1). We tested whether there is a fitness cost associated with carrying the most resistant allele in three outbred laboratory populations of snails. These three populations were derived from the same base population, but differed in average resistance. Under controlled laboratory conditions we found no cost of carrying the most resistant allele in terms of fecundity, and a possible advantage in terms of growth and mortality. These results suggest that it might be possible to drive resistant alleles of sod1 into natural populations of the snail vector for the purpose of controlling transmission of S. mansoni. However, we did observe a strong effect of genetic background on the association between sod1 genotype and resistance. sod1 genotype explained substantial variance in resistance among individuals in the most resistant genetic background, but had little effect in the least resistant genetic background. Thus, epistatic interactions with other loci may be as important a consideration as costs of resistance in the use of sod1 for vector manipulation

    The Biomphalaria glabrata DNA methylation machinery displays spatial tissue expression, is differentially active in distinct snail populations and is modulated by interactions with Schistosoma mansoni

    Get PDF
    BBSRC Grant (BB/K005448/1)Background The debilitating human disease schistosomiasis is caused by infection with schistosome parasites that maintain a complex lifecycle alternating between definitive (human) and intermediate (snail) hosts. While much is known about how the definitive host responds to schistosome infection, there is comparably less information available describing the snail?s response to infection. Methodology/Principle findings Here, using information recently revealed by sequencing of the Biomphalaria glabrata intermediate host genome, we provide evidence that the predicted core snail DNA methylation machinery components are associated with both intra-species reproduction processes and inter-species interactions. Firstly, methyl-CpG binding domain protein (Bgmbd2/3) and DNA methyltransferase 1 (Bgdnmt1) genes are transcriptionally enriched in gonadal compared to somatic tissues with 5-azacytidine (5-AzaC) treatment significantly inhibiting oviposition. Secondly, elevated levels of 5-methyl cytosine (5mC), DNA methyltransferase activity and 5mC binding in pigmented hybrid- compared to inbred (NMRI)- B. glabrata populations indicate a role for the snail?s DNA methylation machinery in maintaining hybrid vigour or heterosis. Thirdly, locus-specific detection of 5mC by bisulfite (BS)-PCR revealed 5mC within an exonic region of a housekeeping protein-coding gene (Bg14-3-3), supporting previous in silico predictions and whole genome BS-Seq analysis of this species? genome. Finally, we provide preliminary evidence for parasite-mediated host epigenetic reprogramming in the schistosome/snail system, as demonstrated by the increase in Bgdnmt1 and Bgmbd2/3 transcript abundance following Bge (B. glabrata embryonic cell line) exposure to parasite larval transformation products (LTP). Conclusions/Significance The presence of a functional DNA methylation machinery in B. glabrata as well as the modulation of these gene products in response to schistosome products, suggests a vital role for DNA methylation during snail development/oviposition and parasite interactions. Further deciphering the role of this epigenetic process during Biomphalaria/Schistosoma co-evolutionary biology may reveal key factors associated with disease transmission and, moreover, enable the discovery of novel lifecycle intervention strategiespublishersversionPeer reviewe
    corecore