375 research outputs found

    Tuning of the excited state properties of phenylenevinylene oligomers:A time-dependent density functional theory study

    Get PDF
    This paper discusses a time-dependent density functional theory study of the effect of molecular structure on the excited state polarizability of conjugated molecules. A short phenylenevinylene oligomer containing three phenyl rings (PV2, distyryl benzene) is taken as a model system. Introduction of methyl substituents is shown to have only a small influence on the increase in polarizability upon excitation (the excess polarizability, Delta(alpha) over bar). Methoxy groups have a much larger effect but in this case Delta(alpha) over bar depends strongly on the dihedral angle between the side chain and the backbone of the molecule. If the central phenyl ring of PV2 has a meta-configuration rather than para, both the optical absorption spectrum and the excess polarizability change considerably. (C) 2003 American Institute of Physics

    Establishment of a Multi-Analyte Serum Biomarker Panel to Identify Lymph Node Metastases in Non-small Cell Lung Cancer

    Get PDF
    IntroductionIn non-small cell lung cancer (NSCLC), the presence of locoregional lymph node metastases remains the most important prognostic factor and significantly guides treatment regimens. Unfortunately, currently-available noninvasive staging modalities have limited accuracy. The objective of this study was to create a multianalyte blood test capable of discriminating a patient's true (pathologic) nodal status preoperatively.MethodsPretreatment serum specimens collected from 107 NSCLC patients with localized disease were screened with 47 biomarkers implicated in disease presence or progression. Multivariate statistical algorithms were then used to identify the optimal combination of biomarkers for accurately discerning each patient's nodal status.ResultsWe identified 15 candidate biomarkers that met our criteria for statistical relevance in discerning a patient's preoperative nodal status. A ‘random forest’ classification algorithm was used with these parameters to define a 6-analyte panel, consisting of macrophage inflammatory protein-1α, carcinoembryonic antigen, stem cell factor, tumor necrosis factor-receptor I, interferon-γ, and tumor necrosis factor-α, that was the optimum combination of biomarkers for identifying a patient's pathologic nodal status. A Classification and Regression Tree analysis was then created with this panel that was capable of correctly classifying 88% of the patients tested, relative to the pathologic assessments. This value is in contrast to our observed 85% classification rate using conventional clinical methods.ConclusionsThis study establishes a serum biomarker panel with efficacy in discerning preoperative nodal status. With further validation, this blood test may be useful for assessing nodal status (including occult disease) in NSCLC patients facing tumor resection therapy

    Light induced single molecule frequency shift

    Get PDF
    Alight induced frequency shift of the 0-0 line was measured in two-photon excitation spectra of single diphenyloctatetraene molecules doped in a crystal matrix. The shifts were proportional to the laser power with a slope of about 600 MHz/W when the laser beam of about 300 mW power was focused to a diameter of 2 mu m. Significantly, the observed line broadenings were an order of magnitude smaller than the shifts. The effect is ascribed mainly to a ''fast'' energy exchange between a local vibration and thermal phonons created by the third harmonic C-H band absorption in the matrix, and partially to an ac Stark shift

    Multiband tight-binding theory of disordered ABC semiconductor quantum dots: Application to the optical properties of alloyed CdZnSe nanocrystals

    Full text link
    Zero-dimensional nanocrystals, as obtained by chemical synthesis, offer a broad range of applications, as their spectrum and thus their excitation gap can be tailored by variation of their size. Additionally, nanocrystals of the type ABC can be realized by alloying of two pure compound semiconductor materials AC and BC, which allows for a continuous tuning of their absorption and emission spectrum with the concentration x. We use the single-particle energies and wave functions calculated from a multiband sp^3 empirical tight-binding model in combination with the configuration interaction scheme to calculate the optical properties of CdZnSe nanocrystals with a spherical shape. In contrast to common mean-field approaches like the virtual crystal approximation (VCA), we treat the disorder on a microscopic level by taking into account a finite number of realizations for each size and concentration. We then compare the results for the optical properties with recent experimental data and calculate the optical bowing coefficient for further sizes

    Glycogen synthase kinase-3 inhibition disrupts nuclear factor-kappaB activity in pancreatic cancer, but fails to sensitize to gemcitabine chemotherapy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Aberrant activation NF-kappaB has been proposed as a mechanism of drug resistance in pancreatic cancer. Recently, inhibition of glycogen synthase kinase-3 has been shown to exert anti-tumor effects on pancreatic cancer cells by suppressing NF-kappaB. Consequently, we investigated whether inhibition of GSK-3 sensitizes pancreatic cancer cells to the chemotherapeutic agent gemcitabine.</p> <p>Methods</p> <p>GSK-3 inhibition was achieved using the pharmacological agent AR-A014418 or siRNA against GSK-3 alpha and beta isoforms. Cytotoxicity was measured using a Sulphorhodamine B assay and clonogenic survival following exposure of six different pancreatic cancer cell lines to a range of doses of either gemcitabine, AR-A014418 or both for 24, 48 and 72 h. We measured protein expression levels by immunoblotting. Basal and TNF-alpha induced activity of NF-kappaB was assessed using a luciferase reporter assay in the presence or absence of GSK-3 inhibition.</p> <p>Results</p> <p>GSK-3 inhibition reduced both basal and TNF-alpha induced NF-kappaB luciferase activity. Knockdown of GSK-3 beta reduced nuclear factor kappa B luciferase activity to a greater extent than GSK-3 alpha, and the greatest effect was seen with dual knockdown of both GSK-3 isoforms. GSK-3 inhibition also resulted in reduction of the NF-kappaB target proteins XIAP, Bcl-X<sub>L</sub>, and cyclin D1, associated with growth inhibition and decreased clonogenic survival. In all cell lines, treatment with either AR-A014418, or gemcitabine led to growth inhibition in a dose- and time-dependent manner. However, with the exception of PANC-1 where drug synergy occurred with some dose schedules, the inhibitory effect of combined drug treatment was additive, sub-additive, or even antagonistic.</p> <p>Conclusion</p> <p>GSK-3 inhibition has anticancer effects against pancreatic cancer cells with a range of genetic backgrounds associated with disruption of NF-kappaB, but does not significantly sensitize these cells to the standard chemotherapy agent gemcitabine. This lack of synergy might be context or cell line dependent, but could also be explained on the basis that although NF-kappaB is an important mediator of pancreatic cancer cell survival, it plays a minor role in gemcitabine resistance. Further work is needed to understand the mechanisms of this effect, including the potential for rational combination of GSK3 inhibitors with other targeted agents for the treatment of pancreatic cancer.</p

    An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics

    Get PDF
    For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types

    Immunohistochemical analysis of changes in signaling pathway activation downstream of growth factor receptors in pancreatic duct cell carcinogenesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The pathogenesis of pancreatic ductal adenocarcinoma (PDAC) involves multi-stage development of molecular aberrations affecting signaling pathways that regulate cancer growth and progression. This study was performed to gain a better understanding of the abnormal signaling that occurs in PDAC compared with normal duct epithelia.</p> <p>Methods</p> <p>We performed immunohistochemistry on a tissue microarray of 26 PDAC, 13 normal appearing adjacent pancreatic ductal epithelia, and 12 normal non-PDAC ducts. We compared the levels of 18 signaling proteins including growth factor receptors, tumor suppressors and 13 of their putative downstream phosphorylated (p-) signal transducers in PDAC to those in normal ductal epithelia.</p> <p>Results</p> <p>The overall profiles of signaling protein expression levels, activation states and sub-cellular distribution in PDAC cells were distinguishable from non-neoplastic ductal epithelia. The ERK pathway activation was correlated with high levels of <sup>S2448</sup>p-mTOR (100%, p = 0.05), <sup>T389</sup>p-S6K (100%, p = 0.02 and <sup>S235/236</sup>p-S6 (86%, p = 0.005). Additionally, <sup>T389</sup>p-S6K correlated with <sup>S727</sup>p-STAT3 (86%, p = 0.005). Advanced tumors with lymph node metastasis were characterized by high levels of <sup>S276</sup>p-NFκB (100%, p = 0.05) and <sup>S9</sup>p-GSK3β (100%, p = 0.05). High levels of PKBβ/AKT2, EGFR, as well as nuclear <sup>T202/Y204</sup>p-ERK and <sup>T180/Y182</sup>p-p38 were observed in normal ducts adjacent to PDAC compared with non-cancerous pancreas.</p> <p>Conclusion</p> <p>Multiple signaling proteins are activated in pancreatic duct cell carcinogenesis including those associated with the ERK, PKB/AKT, mTOR and STAT3 pathways. The ERK pathway activation appears also increased in duct epithelia adjacent to carcinoma, suggesting tumor micro-environmental effects.</p

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts
    • …
    corecore