2,651 research outputs found

    High accuracy measure of atomic polarizability in an optical lattice clock

    Full text link
    Despite being a canonical example of quantum mechanical perturbation theory, as well as one of the earliest observed spectroscopic shifts, the Stark effect contributes the largest source of uncertainty in a modern optical atomic clock through blackbody radiation. By employing an ultracold, trapped atomic ensemble and high stability optical clock, we characterize the quadratic Stark effect with unprecedented precision. We report the ytterbium optical clock's sensitivity to electric fields (such as blackbody radiation) as the differential static polarizability of the ground and excited clock levels: 36.2612(7) kHz (kV/cm)^{-2}. The clock's fractional uncertainty due to room temperature blackbody radiation is reduced an order of magnitude to 3 \times 10^{-17}.Comment: 5 pages, 3 figures, 2 table

    Modelling photometric reverberation data -- a disk-like broad-line region and a potentially larger black hole mass for 3C120

    Full text link
    We consider photometric reverberation mapping, where the nuclear continuum variations are monitored via a broad-band filter and the echo of emission line clouds of the broad line region (BLR) is measured with a suitable narrow-band (NB) filter. We investigate how an incomplete emission-line coverage by the NB filter influences the BLR size determination. This includes two basic cases: 1) a symmetric cut of the blue and red part of the line wings, and 2) the filter positioned asymmetrically to the line centre so that essentially a complete half of the emission line is contained in the NB filter. Under the assumption that the BLR size is dominated by circular Keplerian orbits, we find that symmetric cutting of line wings may lead to overestimating the BLR size by less than 5%. The case of asymmetric half-line coverage, similar as for our data of the Seyfert 1 galaxy 3C120, yields the BLR size with a bias of less than 1%. Our results suggest that any BLR size bias due to narrow-band line cut in photometric reverberation mapping is small and in most cases negligible. We used well sampled photometric reverberation mapping light curves with sharp variation features in both the continuum and the Hbeta light curves to determine the geometry type of the Hbeta BLR for 3C120. Modelling of the light curve, under the assumption that the BLR is essentially virialised, argues against a spherical geometry and favours a nearly face-on disk-like geometry with inclination i = 10 +/- 4 deg and extension from 22 to 28 light days. The low inclination may lead to a larger black hole mass than the derived when using the average geometry scaling factor f=5.5. We discuss deviations of Seyfert 1 galaxies from the M_BH - sigma relation.Comment: 9 pages, 11 figures, accepted for publication in Astronomy and Astrophysic
    corecore