2,944 research outputs found

    Wet oxidation of GeSi at (700)C

    Get PDF
    About 500-nm-thick films of Ge0.36Si0.64 and Ge0.28Si0.72 grown epitaxially on (100)Si have been oxidized at 700-degrees-C in wet ambient. A uniform GexSi1-xO2 oxide layer forms with a smooth interface between it and the unoxidized GexSi1-x layer below. The composition and structure of that layer remains unchanged as monitored by backscattering spectrometry or cross-sectional transmission electronic microscopy. The oxide of both samples grows as square root of oxidation duration. The parabolic rate constant increases with the Ge content and is larger than that for wet oxidation of pure Si at the same temperature. The absence of a regime of linear growth at this relatively low temperature indicates a much enhanced linear rate constant

    On the evolutionary behaviour of BL Lac objects

    Get PDF
    We present a new well defined sample of BL Lac objects selected from the ROSAT All-Sky Survey (RASS). The sample consists of 39 objects with 35 forming a flux limited sample down to f_X = 8 x 10^{-13} cgs, redshifts are known for 33 objects (and 31 of the complete sample). X-ray spectral properties were determined for each object individually with the RASS data. The luminosity function of RASS selected BL Lac objects is compatible with results provided by objects selected with the Einstein observatory, but the RASS selected sample contains objects with luminosities at least tenfold higher. Our analysis confirms the negative evolution for X-ray selected BL Lac objects found in a sample by the Einstein observatory, the parameterization provides similar results. A subdivision of the sample into halves according to the X-ray to optical flux ratio yielded unexpected results. The extremely X-ray dominated objects have higher redshifts and X-ray luminosities and only this subgroup shows clear signs of strong negative evolution. The evolutionary behaviour of objects with an intermediate spectral energy distribution between X-ray and radio dominated is compatible with no evolution at all. Consequences for unified schemes of X-ray and radio selected BL Lac objects are discussed.We suggest that the intermediate BL Lac objects are the basic BL Lac population. The distinction between the two subgroups can be explained if extreme X-ray dominated BL Lac objects are observed in a state of enhanced X-ray activity.Comment: 14 pages incl. 8 figures, accepted by A&

    Bose-Einstein Condensation from a Rotating Thermal Cloud: Vortex Nucleation and Lattice Formation

    Get PDF
    We develop a stochastic Gross-Pitaveskii theory suitable for the study of Bose-Einstein condensation in a {\em rotating} dilute Bose gas. The theory is used to model the dynamical and equilibrium properties of a rapidly rotating Bose gas quenched through the critical point for condensation, as in the experiment of Haljan et al. [Phys. Rev. Lett., 87, 21043 (2001)]. In contrast to stirring a vortex-free condensate, where topological constraints require that vortices enter from the edge of the condensate, we find that phase defects in the initial non-condensed cloud are trapped en masse in the emerging condensate. Bose-stimulated condensate growth proceeds into a disordered vortex configuration. At sufficiently low temperature the vortices then order into a regular Abrikosov lattice in thermal equilibrium with the rotating cloud. We calculate the effect of thermal fluctuations on vortex ordering in the final gas at different temperatures, and find that the BEC transition is accompanied by lattice melting associated with diminishing long range correlations between vortices across the system.Comment: 15 pages, 12 figure

    Block Spin Effective Action for 4d SU(2) Finite Temperature Lattice Gauge Theory

    Get PDF
    The Svetitsky-Yaffe conjecture for finite temperature 4d SU(2) lattice gauge theory is confirmed by observing matching of block spin effective actions of the gauge model with those of the 3d Ising model. The effective action for the gauge model is defined by blocking the signs of the Polyakov loops with the majority rule. To compute it numerically, we apply a variant of the IMCRG method of Gupta and Cordery.Comment: LaTeX2e, 22 pages, 8 Figure

    Nonlinearity-assisted quantum tunneling in a matter-wave interferometer

    Full text link
    We investigate the {\em nonlinearity-assisted quantum tunneling} and formation of nonlinear collective excitations in a matter-wave interferometer, which is realised by the adiabatic transformation of a double-well potential into a single-well harmonic trap. In contrast to the linear quantum tunneling induced by the crossing (or avoided crossing) of neighbouring energy levels, the quantum tunneling between different nonlinear eigenstates is assisted by the nonlinear mean-field interaction. When the barrier between the wells decreases, the mean-field interaction aids quantum tunneling between the ground and excited nonlinear eigenstates. The resulting {\em non-adiabatic evolution} depends on the input states. The tunneling process leads to the generation of dark solitons, and the number of the generated dark solitons is highly sensitive to the matter-wave nonlinearity. The results of the numerical simulations of the matter-wave dynamics are successfully interpreted with a coupled-mode theory for multiple nonlinear eigenstates.Comment: 11 pages, 6 figures, accept for publication in J. Phys.

    Towards a Realistic Equation of State of Strongly Interacting Matter

    Full text link
    We consider a relativistic strongly interacting Bose gas. The interaction is manifested in the off-shellness of the equilibrium distribution. The equation of state that we obtain for such a gas has the properties of a realistic equation of state of strongly interacting matter, i.e., at low temperature it agrees with the one suggested by Shuryak for hadronic matter, while at high temperature it represents the equation of state of an ideal ultrarelativistic Stefan-Boltzmann gas, implying a phase transition to an effectively weakly interacting phase.Comment: LaTeX, figures not include

    Atom lithography with two-dimensional optical masks

    Full text link
    With a two-dimensional (2D) optical mask, nanoscale patterns are created for the first time in an atom lithography process using metastable helium atoms. The internal energy of the atoms is used to locally damage a hydrofobic resist layer, which is removed in a wet etching process. Experiments have been performed with several polarizations for the optical mask, resulting in different intensity patterns, and corresponding nanoscale structures. The results for a linear polarized light field show an array of holes with a diameter of 260 nm, in agreement with a computed pattern. With a circularly polarized light field a line pattern is observed with a spacing of 766 nm. Simulations taking into account many possible experimental imperfections can not explain this pattern.Comment: 5 pages, 4 figure

    SU(2) Flux Distributions on Finite Lattices

    Full text link
    We studied SU(2) flux distributions on four dimensional euclidean lattices with one dimension very large. By choosing the time direction appropriately we can study physics in two cases: one is finite volume in the zero temperature limit, another is finite temperature in the the intermediate to large volume limit. We found that for cases of beta > beta crit there is no intrinsic string formation. Our lattices with beta > beta crit belong to intermediate volume region, and the string tension in this region is due to finite volume effects. In large volumes we found evidence for intrinsic string formation.Comment: 21 pages text, 12 pages of postscript figure

    H2O Maser Observations of Candidate Post-AGB Stars and Discovery of Three High-velocity Water Sources

    Full text link
    We present the results of 22 GHz H_2O maser observations of a sample of 85 post-Asymptotic Giant Branch (post-AGB) candidate stars, selected on the basis of their OH 1612 MHz maser and far-infrared properties. All sources were observed with the Tidbinbilla 70-m radio telescope and 21 detections were made. 86 GHz SiO Mopra observations of a subset of the sample are also presented. Of the 21 H_2O detections, 15 are from sources that are likely to be massive AGB stars and most of these show typical, regular H_2O maser profiles. In contrast, nearly all the detections of more evolved stars exhibited high-velocity H_2O maser emission. Of the five sources seen, v223 (W43A, IRAS 18450-0148) is a well known `water-fountain' source which belongs to a small group of post-AGB stars with highly collimated, high-velocity H_2O maser emission. A second source in our sample, v270 (IRAS 18596+0315), is also known to have high-velocity emission. We report the discovery of similar emission from a further three sources, d46 (IRAS 15445-5449), d62 (IRAS 15544-5332) and b292 (IRAS 18043-2116). The source d46 is an evolved post-AGB star with highly unusual maser properties. The H_2O maser emission from d62 is probably associated with a massive star. The source b292 is a young post-AGB star that is highly likely to be a water-fountain source, with masers detected over a velocity range of 210 km s^{-1}.Comment: 47 pages, 9 figures, 4 tables, accepted by Ap
    • …
    corecore