18,265 research outputs found

    Chaotic string-capture by black hole

    Full text link
    We consider a macroscopic charge-current carrying (cosmic) string in the background of a Schwarzschild black hole. The string is taken to be circular and is allowed to oscillate and to propagate in the direction perpendicular to its plane (that is parallel to the equatorial plane of the black hole). Nurmerical investigations indicate that the system is non-integrable, but the interaction with the gravitational field of the black hole anyway gives rise to various qualitatively simple processes like "adiabatic capture" and "string transmutation".Comment: 13 pages Latex + 3 figures (not included), Nordita 93/55

    Celestial mechanics in Kerr spacetime

    Get PDF
    The dynamical parameters conventionally used to specify the orbit of a test particle in Kerr spacetime are the energy EE, the axial component of the angular momentum, LzL_{z}, and Carter's constant QQ. These parameters are obtained by solving the Hamilton-Jacobi equation for the dynamical problem of geodesic motion. Employing the action-angle variable formalism, on the other hand, yields a different set of constants of motion, namely, the fundamental frequencies ωr\omega_{r}, ωθ\omega_{\theta} and ωϕ\omega_{\phi} associated with the radial, polar and azimuthal components of orbital motion. These frequencies, naturally, determine the time scales of orbital motion and, furthermore, the instantaneous gravitational wave spectrum in the adiabatic approximation. In this article, it is shown that the fundamental frequencies are geometric invariants and explicit formulas in terms of quadratures are derived. The numerical evaluation of these formulas in the case of a rapidly rotating black hole illustrates the behaviour of the fundamental frequencies as orbital parameters such as the semi-latus rectum pp, the eccentricity ee or the inclination parameter θ−\theta_{-} are varied. The limiting cases of circular, equatorial and Keplerian motion are investigated as well and it is shown that known results are recovered from the general formulas.Comment: 25 pages (LaTeX), 5 figures, submitted to Class. Quantum Gra

    Emergence of stability in a stochastically driven pendulum: beyond the Kapitsa effect

    Full text link
    We consider a prototypical nonlinear system which can be stabilized by multiplicative noise: an underdamped non-linear pendulum with a stochastically vibrating pivot. A numerical solution of the pertinent Fokker-Planck equation shows that the upper equilibrium point of the pendulum can become stable even when the noise is white, and the "Kapitsa pendulum" effect is not at work. The stabilization occurs in a strong-noise regime where WKB approximation does not hold.Comment: 4 pages, 7 figure

    A BPS Interpretation of Shape Invariance

    Full text link
    We show that shape invariance appears when a quantum mechanical model is invariant under a centrally extended superalgebra endowed with an additional symmetry generator, which we dub the shift operator. The familiar mathematical and physical results of shape invariance then arise from the BPS structure associated with this shift operator. The shift operator also ensures that there is a one-to-one correspondence between the energy levels of such a model and the energies of the BPS-saturating states. These findings thus provide a more comprehensive algebraic setting for understanding shape invariance.Comment: 15 pages, 2 figures, LaTe

    Efficient numerical diagonalization of hermitian 3x3 matrices

    Full text link
    A very common problem in science is the numerical diagonalization of symmetric or hermitian 3x3 matrices. Since standard "black box" packages may be too inefficient if the number of matrices is large, we study several alternatives. We consider optimized implementations of the Jacobi, QL, and Cuppen algorithms and compare them with an analytical method relying on Cardano's formula for the eigenvalues and on vector cross products for the eigenvectors. Jacobi is the most accurate, but also the slowest method, while QL and Cuppen are good general purpose algorithms. The analytical algorithm outperforms the others by more than a factor of 2, but becomes inaccurate or may even fail completely if the matrix entries differ greatly in magnitude. This can mostly be circumvented by using a hybrid method, which falls back to QL if conditions are such that the analytical calculation might become too inaccurate. For all algorithms, we give an overview of the underlying mathematical ideas, and present detailed benchmark results. C and Fortran implementations of our code are available for download from http://www.mpi-hd.mpg.de/~globes/3x3/ .Comment: 13 pages, no figures, new hybrid algorithm added, matches published version, typo in Eq. (39) corrected; software library available at http://www.mpi-hd.mpg.de/~globes/3x3

    Intermittency and the passive nature of the magnitude of the magnetic field

    Full text link
    It is shown that the statistical properties of the magnitude of the magnetic field in turbulent electrically conducting media resemble, in the inertial range, those of passive scalars in fully developed three-dimensional fluid turbulence. This conclusion, suggested by the data from Advanced Composition Explorer, is supported by a brief analysis of the appropriate magnetohydrodynamic equations

    Exploring a rheonomic system

    Get PDF
    A simple and illustrative rheonomic system is explored in the Lagrangian formalism. The difference between Jacobi's integral and energy is highlighted. A sharp contrast with remarks found in the literature is pointed out. The non-conservative system possess a Lagrangian not explicitly dependent on time and consequently there is a Jacobi's integral. The Lagrange undetermined multiplier method is used as a complement to obtain a few interesting conclusion

    Oscillator model for dissipative QED in an inhomogeneous dielectric

    Full text link
    The Ullersma model for the damped harmonic oscillator is coupled to the quantised electromagnetic field. All material parameters and interaction strengths are allowed to depend on position. The ensuing Hamiltonian is expressed in terms of canonical fields, and diagonalised by performing a normal-mode expansion. The commutation relations of the diagonalising operators are in agreement with the canonical commutation relations. For the proof we replace all sums of normal modes by complex integrals with the help of the residue theorem. The same technique helps us to explicitly calculate the quantum evolution of all canonical and electromagnetic fields. We identify the dielectric constant and the Green function of the wave equation for the electric field. Both functions are meromorphic in the complex frequency plane. The solution of the extended Ullersma model is in keeping with well-known phenomenological rules for setting up quantum electrodynamics in an absorptive and spatially inhomogeneous dielectric. To establish this fundamental justification, we subject the reservoir of independent harmonic oscillators to a continuum limit. The resonant frequencies of the reservoir are smeared out over the real axis. Consequently, the poles of both the dielectric constant and the Green function unite to form a branch cut. Performing an analytic continuation beyond this branch cut, we find that the long-time behaviour of the quantised electric field is completely determined by the sources of the reservoir. Through a Riemann-Lebesgue argument we demonstrate that the field itself tends to zero, whereas its quantum fluctuations stay alive. We argue that the last feature may have important consequences for application of entanglement and related processes in quantum devices.Comment: 24 pages, 1 figur

    Uniqueness of collinear solutions for the relativistic three-body problem

    Full text link
    Continuing work initiated in an earlier publication [Yamada, Asada, Phys. Rev. D 82, 104019 (2010)], we investigate collinear solutions to the general relativistic three-body problem. We prove the uniqueness of the configuration for given system parameters (the masses and the end-to-end length). First, we show that the equation determining the distance ratio among the three masses, which has been obtained as a seventh-order polynomial in the previous paper, has at most three positive roots, which apparently provide three cases of the distance ratio. It is found, however, that, even for such cases, there exists one physically reasonable root and only one, because the remaining two positive roots do not satisfy the slow motion assumption in the post-Newtonian approximation and are thus discarded. This means that, especially for the restricted three-body problem, exactly three positions of a third body are true even at the post-Newtonian order. They are relativistic counterparts of the Newtonian Lagrange points L1, L2 and L3. We show also that, for the same masses and full length, the angular velocity of the post-Newtonian collinear configuration is smaller than that for the Newtonian case. Provided that the masses and angular rate are fixed, the relativistic end-to-end length is shorter than the Newtonian one.Comment: 18 pages, 1 figure; typos corrected, text improved; accepted by PR
    • …
    corecore