9 research outputs found
The Ks-band Tully-Fisher Relation - A Determination of the Hubble Parameter from 218 ScI Galaxies and 16 Galaxy Clusters
The value of the Hubble Parameter (H0) is determined using the
morphologically type dependent Ks-band Tully-Fisher Relation (K-TFR). The slope
and zero point are determined using 36 calibrator galaxies with ScI morphology.
Calibration distances are adopted from direct Cepheid distances, and group or
companion distances derived with the Surface Brightness Fluctuation Method or
Type Ia Supernova. Distances are determined to 16 galaxy clusters and 218 ScI
galaxies with minimum distances of 40.0 Mpc. From the 16 galaxy clusters a
weighted mean Hubble Parameter of H0=84.2 +/-6 km s-1 Mpc-1 is found. From the
218 ScI galaxies a Hubble Parameter of H0=83.4 +/-8 km s-1 Mpc-1 is found. When
the zero point of the K-TFR is corrected to account for recent results that
find a Large Magellanic Cloud distance modulus of 18.39 +/-0.05 a Hubble
Parameter of 88.0 +/-6 km s-1 Mpc-1 is found. A comparison with the results of
the Hubble Key Project (Freedman et al 2001) is made and discrepancies between
the K-TFR distances and the HKP I-TFR distances are discussed. Implications for
Lamda-CDM cosmology are considered with H0=84 km s-1 Mpc-1. (Abridged)Comment: 37 pages including 12 tables and 7 figures. Final version accepted
for publication in the Journal of Astrophysics & Astronom
New bounds for the {D}escartes method
We give a new bound for the number of recursive subdivisions in the Descartes method for polynomial real root isolation. Our proof uses Ostrowski’s theory of normal power series from 1950 which has so far been overlooked in the literature. We combine Ostrowski’s results with a theorem of Davenport from 1985 to obtain our bound. We also characterize normality of cubic polynomials by explicit conditions on their roots and derive a generalization of one of Ostrowski’s theorems
Parallel Real Root Isolation using the Descartes Method
Many sequential methods for polynomial real root isolation proceed by interval bisection. The associated binary search trees tend to be narrow and hence do not offer much parallelism. For this reason, it is not obvious how real roots can be isolated in parallel. The paper presents an approach that parallelizes the computations associated with each node of the search tree. In the Descartes method these computations can be modeled by a pyramid dag. The pyramid dag is scheduled using a new method that has linear communication overhead. This method can also be used for a number of dynamic programming problems. In addition to parallelizing node computations, the parallel Descartes method exploits any available parallelism at the search tree level. The (parallel) computations associated with the search nodes in each tree level are scheduled using a new centralized method for distributing uniform parallelizable tasks. When isolating the real roots of random polynomials of degrees ..