6,740 research outputs found

    LL-valley electron gg factor in bulk GaAs and AlAs

    Full text link
    We study the Land\'e gg-factor of conduction electrons in the LL-valley of bulk GaAs and AlAs by using a three-band kp\mathbf{k}\cdot\mathbf{p} model together with the tight-binding model. We find that the LL-valley gg-factor is highly anisotropic, and can be characterized by two components, gg_{\perp} and gg_{\|}. gg_{\perp} is close to the free electron Land\'e factor but gg_{\|} is strongly affected by the remote bands. The contribution from remote bands on gg_{\|} depends on how the remote bands are treated. However, when the magnetic field is in the Voigt configuration, which is widely used in the experiments, different models give almost identical gg-factor.Comment: 4 pages, 1 figure, To be published in J. App. Phys. 104, 200

    Mott physics, sign structure, ground state wavefunction, and high-Tc superconductivity

    Full text link
    In this article I give a pedagogical illustration of why the essential problem of high-Tc superconductivity in the cuprates is about how an antiferromagnetically ordered state can be turned into a short-range state by doping. I will start with half-filling where the antiferromagnetic ground state is accurately described by the Liang-Doucot-Anderson (LDA) wavefunction. Here the effect of the Fermi statistics becomes completely irrelevant due to the no double occupancy constraint. Upon doping, the statistical signs reemerge, albeit much reduced as compared to the original Fermi statistical signs. By precisely incorporating this altered statistical sign structure at finite doping, the LDA ground state can be recast into a short-range antiferromagnetic state. Superconducting phase coherence arises after the spin correlations become short-ranged, and the superconducting phase transition is controlled by spin excitations. I will stress that the pseudogap phenomenon naturally emerges as a crossover between the antiferromagnetic and superconducting phases. As a characteristic of non Fermi liquid, the mutual statistical interaction between the spin and charge degrees of freedom will reach a maximum in a high-temperature "strange metal phase" of the doped Mott insulator.Comment: 12 pages, 12 figure

    A Comparison of Tree Growth in Loblolly Pine (Pinus taeda) Plantations and Silvopasture Settings in East Texas

    Get PDF
    A desire by landowners to diversify potential income sources has resulted in an increased interest in silvopasture. This intensive land management option allows for the production of timber, livestock and/or forage on the same land base. With traditional plantation systems featuring loblolly pine (Pinus taeda) common in the western gulf coast region of the southeastern United States, comparisons of tree growth are needed to justify the use of silvopasture. This study evaluated the height, diameter and volume growth 13 years post-establishment of loblolly pine in both silvopasture and plantation spacings on a single site in east Texas. Individual trees in silvopasture plots had greater diameter and volume than those in plantation plots; however, plantation plots yielded greater volume per hectare. The greater volume per hectare was driven by the greater number of trees planted (1282 trees ha-1) in plantation plots than those planted (598 trees ha-1) in silvopasture. In silvopasture, site resources are concentrated on producing larger-diameter, sawtimber size, and theoretically, higher-value trees

    Particle dynamics of a cartoon dune

    Get PDF
    The spatio-temporal evolution of a downsized model for a desert dune is observed experimentally in a narrow water flow channel. A particle tracking method reveals that the migration speed of the model dune is one order of magnitude smaller than that of individual grains. In particular, the erosion rate consists of comparable contributions from creeping (low energy) and saltating (high energy) particles. The saltation flow rate is slightly larger, whereas the number of saltating particles is one order of magnitude lower than that of the creeping ones. The velocity field of the saltating particles is comparable to the velocity field of the driving fluid. It can be observed that the spatial profile of the shear stress reaches its maximum value upstream of the crest, while its minimum lies at the downstream foot of the dune. The particle tracking method reveals that the deposition of entrained particles occurs primarily in the region between these two extrema of the shear stress. Moreover, it is demonstrated that the initial triangular heap evolves to a steady state with constant mass, shape, velocity, and packing fraction after one turnover time has elapsed. Within that time the mean distance between particles initially in contact reaches a value of approximately one quarter of the dune basis length

    Dune formation on the present Mars

    Full text link
    We apply a model for sand dunes to calculate formation of dunes on Mars under the present Martian atmospheric conditions. We find that different dune shapes as those imaged by Mars Global Surveyor could have been formed by the action of sand-moving winds occuring on today's Mars. Our calculations show, however, that Martian dunes could be only formed due to the higher efficiency of Martian winds in carrying grains into saltation. The model equations are solved to study saltation transport under different atmospheric conditions valid for Mars. We obtain an estimate for the wind speed and migration velocity of barchan dunes at different places on Mars. From comparison with the shape of bimodal sand dunes, we find an estimate for the timescale of the changes in Martian wind regimes.Comment: 16 pages, 12 figure

    Mutual-Chern-Simons effective theory of doped antiferromagnets

    Full text link
    A mutual-Chern-Simons Lagrangian is derived as a minimal field theory description of the phase-string model for doped antiferromagnets. Such an effective Lagrangian is shown to retain the full symmetries of parity, time-reversal, and global SU(2) spin rotation, in contrast to conventional Chern-Simons theories where first two symmetries are usually broken. Two ordered phases, i.e., antiferromagnetic and superconducting states, are found at low temperatures as characterized by dual Meissner effects and dual flux quantization conditions due to the mutual-Chern-Simons gauge structure. A dual confinement in charge/spin degrees of freedom occurs such that no true spin-charge separation is present in these ordered phases, but the spin-charge separation/deconfinement serves as a driving force in the unconventional phase transitions of these ordered states to disordered states.Comment: 16 pages, 2 figures; published versio

    Very Long Baseline Neutrino Oscillation Experiment for Precise Measurements of Mixing Parameters and CP Violating Effects

    Get PDF
    We analyze the prospects of a feasible, Brookhaven National Laboratory based, very long baseline (BVLB) neutrino oscillation experiment consisting of a conventional horn produced low energy wide band beam and a detector of 500 kT fiducial mass with modest requirements on event recognition and resolution. Such an experiment is intended primarily to determine CP violating effects in the neutrino sector for 3-generation mixing. We analyze the sensitivity of such an experiment. We conclude that this experiment will allow determination of the CP phase δCP\delta_{CP} and the currently unknown mixing parameter θ13\theta_{13}, if sin22θ130.01\sin ^2 2 \theta_{13} \geq 0.01, a value 15\sim 15 times lower than the present experimental upper limit. In addition to θ13\theta_{13} and δCP\delta_{CP}, the experiment has great potential for precise measurements of most other parameters in the neutrino mixing matrix including Δm322\Delta m^2_{32}, sin22θ23\sin^2 2\theta_{23}, Δm212×sin2θ12\Delta m^2_{21}\times \sin 2 \theta_{12}, and the mass ordering of neutrinos through the observation of the matter effect in the νμνe\nu_\mu \to \nu_e appearance channel.Comment: 12 pages, 10 figure

    Saltation transport on Mars

    Full text link
    We present the first calculation of saltation transport and dune formation on Mars and compare it to real dunes. We find that the rate at which grains are entrained into saltation on Mars is one order of magnitude higher than on Earth. With this fundamental novel ingredient, we reproduce the size and different shapes of Mars dunes, and give an estimate for the wind velocity on Mars.Comment: 4 pages, 3 figure

    Magnetic Incommensurability in Doped Mott Insulator

    Full text link
    In this paper we explore the incommensurate spatial modulation of spin-spin correlations as the intrinsic property of the doped Mott insulator, described by the tJt-J model. We show that such an incommensurability is a direct manifestation of the phase string effect introduced by doped holes in both one- and two-dimensional cases. The magnetic incommensurate peaks of dynamic spin susceptibility in momentum space are in agreement with the neutron-scattering measurement of cuprate superconductors in both position and doping dependence. In particular, this incommensurate structure can naturally reconcile the neutron-scattering and NMR experiments of cuprates.Comment: 12 pages (RevTex), five postscript figure
    corecore