3,122 research outputs found

    Potentiometric determination of the gibbs energies of formation of lead aluminates

    Get PDF
    The Gibbs energies of formation of three compounds in the PbOAl2O3 systemā€”2PbO·Al2O3, PbOAl2O3 , and PbO· 6A1203ā€”have been determined from potentiometric measurements on reversible solidā€state galvanic cells Pt, Ir I Pb,αAl2O3, PbO ·6A1203 I ZrO2CaO I NiO, Ni I Pt Pt I NiO, Ni I ZrO2CaO I Pb, PbO·6A1203, PbO· A1203 I It, Pt and Pt I NiO, Ni I ZrO2CaO I Pb, PbO·A12O3, 2PbO·Al2O3 It, Pt in the temperature range 850ā€“1375 K. The results are discussed in the light of reported phase diagrams for the PbOA1203 system. The partial pressures of different lead oxide species, PbnOn, n = 1−6, in the gas phase in equilibrium with the aluminates are calculated by combining the results of this study with the massā€spectrometric data of Drowart et al.(1) for polymerization equilibria in the gas phase. The concentration of oxygen in lead in equilibrium with the aluminates are also derived from the results and the literature data on the Gibbs energy of solution of oxygen in liquid lead

    Superconductivity Near Ferromagnetism in MgCNi3

    Full text link
    An unusual quasi-two-dimensional heavy band mass van Hove singularity (vHs) lies very near the Fermi energy in MgCNi3, recently reported to superconduct at 8.5 K. This compound is strongly exchange enhanced and is unstable to ferromagnetism upon hole doping with 12% Mg --> Na or Li. The 1/4-depleted fcc (frustrated) Ni sublattice and lack of Fermi surface nesting argues against competing antiferromagnetic and charge density wave instabilities. We identify an essentially infinite mass along the M-Gamma line, leading to quasi-two-dimensionality of this vHs may promote unconventional p-wave pairing that could coexist with superconductivity.Comment: 4 two-column pages, 4 figure

    A characteristic lengthscale causes anomalous size effects and boundary programmability in mechanical metamaterials

    Get PDF
    The architecture of mechanical metamaterialsis designed to harness geometry, non-linearity and topology to obtain advanced functionalities such as shape morphing, programmability and one-way propagation. While a purely geometric framework successfully captures the physics of small systems under idealized conditions, large systems or heterogeneous driving conditions remain essentially unexplored. Here we uncover strong anomalies in the mechanics of a broad class of metamaterials, such as auxetics, shape-changers or topological insulators: a non-monotonic variation of their stiffness with system size, and the ability of textured boundaries to completely alter their properties. These striking features stem from the competition between rotation-based deformations---relevant for small systems---and ordinary elasticity, and are controlled by a characteristic length scale which is entirely tunable by the architectural details. Our study provides new vistas for designing, controlling and programming the mechanics of metamaterials in the thermodynamic limit.Comment: Main text has 4 pages, 4 figures + Methods and Supplementary Informatio

    DESIGNING AN EXTENDED REALITY MOBILE GUIDE APPLICATION TO COMMUNICATE AND INTERPRET SERIAL WORLD HERITAGE SITES: A CASE STUDY OF KOREAā€™S SEOWON UNESCO WORLD HERITAGE SITE

    Get PDF
    Extended reality (XR) mobile guide applications offer unprecedented potential for immersive visitor experiences and in-depth knowledge retention to promote cultural learning at large-scale heritage sites, but, despite their significant development, the literature underexplores these applications for World Heritage sites, especially the serial properties that are spatially dispersed in various locations but configured as a single property. This paper describes a framework (blueprint) for the development of an XR mobile guide application focused on serial properties. By incorporating interactive XR and edutainment features, it explores a way to comprehensively reveal the interconnections between the heritage attributes of the subcomponent of the serial properties and their larger, cross-cultural context vis-Ć -vis the Outstanding Universal Values. To this end, at the Seowon, the UNESCO World Heritage site in Korea, we analyzed user interactions with a prototype of the XR application to identify user preferences and areas for improving the framework

    The mechanical relaxation study of polycrystalline MgCNi3

    Full text link
    The mechanical relaxation spectra of a superconducting and a non-superconducting MgCNi3 samples were measured from liquid nitrogen temperature to room temperature at frequency of kilohertz. There are two internal friction peaks (at 300 K labeled as P1 and 125 K as P2) for the superconducting sample. For the non-superconducting one, the position of P1 shifts to 250 K, while P2 is almost completely depressed. It is found that the peak position of P2 shifts towards higher temperature under higher measuring frequency. The calculated activation energy is 0.13eV. We propose an explanation relating P2 to the carbon atom jumping among the off-center positions. And further we expect that the behaviors of carbon atoms maybe correspond to the normal state crossovers around 150 K and 50 K observed by many other experiments.Comment: 4 figure

    Core pinning by intragranular nanoprecipitates in polycrystalline MgCNi_3

    Full text link
    The nanostructure and magnetic properties of polycrystalline MgCNi_3 were studied by x-ray diffraction, electron microscopy, and vibrating sample magnetometry. While the bulk flux-pinning force curve F_p(H) indicates the expected grain-boundary pinning mechanism just below T_c = 7.2 K, a systematic change to pinning by a nanometer-scale distribution of core pinning sites is indicated by a shift of F_p(H) with decreasing temperature. The lack of scaling of F_p(H) suggests the presence of 10 to 20% of nonsuperconducting regions inside the grains, which are smaller than the diameter of fluxon cores 2xi at high temperature and become effective with decreasing temperature when xi(T) approaches the nanostructural scale. Transmission electron microscopy revealed cubic and graphite nanoprecipitates with 2 to 5 nm size, consistent with the above hypothesis since xi(0) = 6 nm. High critical current densities, more than 10^6 A/cm^2 at 1 T and 4.2 K, were obtained for grain colonies separated by carbon. Dirty-limit behavior seen in previous studies may be tied to electron scattering by the precipitates, indicating the possibility that strong core pinning might be combined with a technologically useful upper critical field if versions of MgCNi_3 with higher T_c can be found.Comment: 5 pages, 6 figures, submitted to PR

    Band Calculations for Ce Compounds with AuCu3_{3}-type Crystal Structure on the basis of Dynamical Mean Field Theory I. CePd3_{3} and CeRh3_{3}

    Full text link
    Band calculations for Ce compounds with the AuCu3_{3}-type crystal structure were carried out on the basis of dynamical mean field theory (DMFT). The auxiliary impurity problem was solved by a method named NCAf2f^{2}vc (noncrossing approximation including the f2f^{2} state as a vertex correction). The calculations take into account the crystal-field splitting, the spin-orbit interaction, and the correct exchange process of the f1ā†’f0,f2f^{1} \rightarrow f^{0},f^{2} virtual excitation. These are necessary features in the quantitative band theory for Ce compounds and in the calculation of their excitation spectra. The results of applying the calculation to CePd3_{3} and CeRh3_{3} are presented as the first in a series of papers. The experimental results of the photoemission spectrum (PES), the inverse PES, the angle-resolved PES, and the magnetic excitation spectra were reasonably reproduced by the first-principles DMFT band calculation. At low temperatures, the Fermi surface (FS) structure of CePd3_{3} is similar to that of the band obtained by the local density approximation. It gradually changes into a form that is similar to the FS of LaPd3_{3} as the temperature increases, since the 4f4f band shifts to the high-energy side and the lifetime broadening becomes large.}Comment: 12 pasges, 13 figure

    Pressure-induced magnetic transition and volume collapse in FeAs superconductors: An orbital-selective Mott scenario

    Full text link
    Motivated by pressure experiments on FeAs-122 superconductors, we propose a scenario based on local-moment physics to explain the simultaneous disappearance of magnetism, reduction of the unit cell volume, and decrease in resistivity. In this scenario, the low-pressure magnetic phase derives from Fe moments, which become screened in the paramagnetic high-pressure phase. The quantum phase transition can be described as an orbital-selective Mott transition, which is rendered first order by coupling to the lattice, in analogy to a Kondo volume collapse. Spin-fluctuation driven superconductivity competes with antiferromagnetism and may be stabilized at low temperatures in the high-pressure phase. The ideas are illustrated by a suitable mean-field analysis of an Anderson lattice model.Comment: 9 pages, 3 figs; (v2) robustness of OS Mott transition vs. fragility of superconductivity discussed, final version to be publishe

    Water-Gated Charge Doping of Graphene Induced by Mica Substrates

    Full text link
    We report on the existence of water-gated charge doping of graphene deposited on atomically flat mica substrates. Molecular films of water in units of ~0.4 nm-thick bilayers were found to be present in regions of the interface of graphene/mica hetero-stacks prepared by micromechanical exfoliation of kish graphite. The spectral variation of the G and 2D bands, as visualized by Raman mapping, shows that mica substrates induce strong p-type doping in graphene, with hole densities of (9Ā±2)Ɨ1012cm(9 \pm 2) \times 1012 cm{-2}$. The ultrathin water films, however, effectively block interfacial charge transfer, rendering graphene significantly less hole-doped. Scanning Kelvin probe microscopy independently confirmed a water-gated modulation of the Fermi level by 0.35 eV, in agreement with the optically determined hole density. The manipulation of the electronic properties of graphene demonstrated in this study should serve as a useful tool in realizing future graphene applications.Comment: 15 pages, 4 figures; Nano Letters, accepted (2012
    • ā€¦
    corecore