3,086 research outputs found
Recurrence in generic staircases
The straight-line flow on almost every staircase and on almost every square
tiled staircase is recurrent. For almost every square tiled staircase the set
of periodic orbits is dense in the phase space
Demagnetization Borne Microscale Skyrmions
Magnetic systems are an exciting realm of study that is being explored on
smaller and smaller scales. One extremely interesting magnetic state that has
gained momentum in recent years is the skyrmionic state. It is characterized by
a vortex where the edge magnetic moments point opposite to the core. Although
skyrmions have many possible realizations, in practice, creating them in a lab
is a difficult task to accomplish. In this work, new methods for skyrmion
generation and customization are suggested. Skyrmionic behavior was numerically
observed in minimally customized simulations of spheres, hemisphere,
ellipsoids, and hemi-ellipsoids, for typ- ical Cobalt parameters, in a range
from approximately 40 nm to 120 nm in diameter simply by applying a field
Continuous Neel to Bloch Transition as Thickness Increases: Statics and Dynamics
We analyze the properties of Neel and Bloch domain walls as a function of
film thickness h, for systems where, in addition to exchange, the dipole-dipole
interaction must be included. The Neel to Bloch phase transition is found to be
a second order transition at hc, mediated by a single unstable mode that
corresponds to oscillatory motion of the domain wall center. A uniform
out-of-plane rf-field couples strongly to this critical mode only in the Neel
phase. An analytical Landau theory shows that the critical mode frequency
varies as the square root of (hc - h) just below the transition, as found
numerically.Comment: 4 pages, 4 figure
Estimating Be Star Disk Radii using H-alpha Emission Equivalent Widths
We present numerical models of the circumstellar disks of Be stars, and we
describe the resulting synthetic H-alpha emission lines and maps of the
wavelength-integrated emission flux projected onto the sky. We demonstrate that
there are monotonic relationships between the emission line equivalent width
and the ratio of the angular half-width at half maximum of the projected disk
major axis to the radius of the star. These relationships depend mainly upon
the temperatures of the disk and star, the inclination of the disk normal to
the line of sight, and the adopted outer boundary for the disk radius. We show
that the predicted H-alpha disk radii are consistent with those observed
directly through long baseline interferometry of nearby Be stars (especially
once allowance is made for disk truncation in binaries and for dilution of the
observed H-alpha equivalent width by continuum disk flux in the V-band).Comment: 12 pages, 2 figures, ApJL in pres
Existence of vertical spin stiffness in Landau-Lifshitz-Gilbert equation in ferromagnetic semiconductors
We calculate the magnetization torque due to the spin polarization of the
itinerant electrons by deriving the kinetic spin Bloch equations based on the
- model. We find that the first-order gradient of the magnetization
inhomogeneity gives rise to the current-induced torques, which are consistent
to the previous works. At the second-order gradient, we find an effective
magnetic field perpendicular to the spin stiffness filed. This field is
proportional to the nonadiabatic parameter . We show that this vertical
spin stiffness term can significantly modify the domain-wall structure in
ferromagnetic semiconductors and hence should be included in the
Landau-Lifshitz-Gilbert equation in studying the magnetization dynamics.Comment: 7 pages, 4 figure
Influence of topography and Co domain walls on the magnetization reversal of the FeNi layer in FeNi/AlO/Co magnetic tunnel junctions
We have studied the magnetization reversal dynamics of FeNi/AlO/Co
magnetic tunnel junctions deposited on step-bunched Si substrates using
magneto-optical Kerr effect and time-resolved x-ray photoelectron emission
microscopy combined with x-ray magnetic circular dichroism (XMCD-PEEM).
Different reversal mechanisms have been found depending on the substrate miscut
angle. Larger terraces (smaller miscut angles) lead to a higher nucleation
density and stronger domain wall pinning. The width of domain walls with
respect to the size of the terraces seems to play an important role in the
reversal. We used the element selectivity of XMCD-PEEM to reveal the strong
influence of the stray field of domain walls in the hard magnetic layer on the
magnetic switching of the soft magnetic layer.Comment: 8 Pages, 7 Figure
Dynamics of magnetic domain wall motion after nucleation: Dependence on the wall energy
The dynamics of magnetic domain wall motion in the FeNi layer of a
FeNi/Al2O3/Co trilayer has been investigated by a combination of x-ray magnetic
circular dichroism, photoelectron emission microscopy, and a stroboscopic
pump-probe technique. The nucleation of domains and subsequent expansion by
domain wall motion in the FeNi layer during nanosecond-long magnetic field
pulses was observed in the viscous regime up to the Walker limit field. We
attribute an observed delay of domain expansion to the influence of the domain
wall energy that acts against the domain expansion and that plays an important
role when domains are small.Comment: Accepted for publication in Physical Review Letter
Phase coherent transport in (Ga,Mn)As
Quantum interference effects and resulting quantum corrections of the
conductivity have been intensively studied in disordered conductors over the
last decades. The knowledge of phase coherence lengths and underlying dephasing
mechanisms are crucial to understand quantum corrections to the resistivity in
the different material systems. Due to the internal magnetic field and the
associated breaking of time-reversal symmetry quantum interference effects in
ferromagnetic materials have been scarcely explored. Below we describe the
investigation of phase coherent transport phenomena in the newly discovered
ferromagnetic semiconductor (Ga,Mn)As. We explore universal conductance
fluctuations in mesoscopic (Ga,Mn)As wires and rings, the Aharonov-Bohm effect
in nanoscale rings and weak localization in arrays of wires, made of the
ferromagnetic semiconductor material. The experiments allow to probe the phase
coherence length L_phi and the spin flip length L_SO as well as the temperature
dependence of dephasing.Comment: 22 pages, 10 figure
Ergodic directions for billiards in a strip with periodically located obstacles
We study the size of the set of ergodic directions for the directional
billiard flows on the infinite band with periodically placed
linear barriers of length . We prove that the set of ergodic
directions is always uncountable. Moreover, if is rational
the Hausdorff dimension of the set of ergodic directions is greater than 1/2.
In both cases (rational and irrational) we construct explicitly some sets of
ergodic directions.Comment: The article is complementary to arXiv:1109.458
- âŠ