12,860 research outputs found
Symbiosis through exploitation and the merger of lineages in evolution
A model for the coevolution of two species in facultative symbiosis is used to investigate conditions under which species merge to form a single reproductive unit. Two traits evolve in each species, the first affecting loss of resources from an individual to its partner, and the second affecting vertical transmission of the symbiosis from one generation to the next. Initial conditions are set so that the symbiosis involves exploitation of one partner by the other and vertical transmission is very rare. It is shown that, even in the face of continuing exploitation, a stable symbiotic unit can evolve with maximum vertical transmission of the partners. Such evolution requires that eventually deaths should exceed births for both species in the free-living state, a condition which can be met if the victim, in the course of developing its defences, builds up sufficiently large costs in the free-living state. This result expands the set of initial conditions from which separate lineages can be expected to merge into symbiotic units
Neutron and muon-induced background studies for the AMoRE double-beta decay experiment
AMoRE (Advanced Mo-based Rare process Experiment) is an experiment to search
a neutrinoless double-beta decay of Mo in molybdate crystals. The
neutron and muon-induced backgrounds are crucial to obtain the zero-background
level (< counts/(keVkgyr)) for the AMoRE-II experiment,
which is the second phase of the AMoRE project, planned to run at YEMI
underground laboratory. To evaluate the effects of neutron and muon-induced
backgrounds, we performed Geant4 Monte Carlo simulations and studied a
shielding strategy for the AMORE-II experiment. Neutron-induced backgrounds
were also included in the study. In this paper, we estimated the background
level in the presence of possible shielding structures, which meet the
background requirement for the AMoRE-II experiment
Mechanism of enhanced light output in InGaN-based microlight emitting diodes
Micro-light emitting diode (LED) arrays with diameters of 4 to 20 mum have been fabricated and were found to be much more efficient light emitters compared to their broad-area counterparts, with up to five times enhancement in optical power densities. The possible mechanisms responsible for the improvement in performance were investigated. Strain relaxation in the microstructures as measured by Raman spectroscopy was not observed, arguing against theories of an increase in internal quantum efficiency due to a reduction of the piezoelectric field put forward by other groups. Optical microscope images show intense light emission at the periphery of the devices, as a result of light scattering off the etched sidewalls. This increases the extraction efficiency relative to broad area devices and boosts the forward optical output. In addition, spectra of the forward emitted light reveal the presence of resonant cavity modes [whispering gallery (WG) modes in particular] which appear to play a role in enhancing the optical output
HVAC Solutions for Small- and Medium-sized Commercial Building Retrofit Opportunities
According to the Commercial Building Energy Consumption Survey 2003 (CBECS 2003) conducted by the U.S. Energy Information Administration, over 70% of existing commercial buildings across the United States are more than twenty years old, with many of these buildings soon in need of renovation. Also, CBECS 2003 reports that existing small- and medium-sized commercial buildings (smaller than 200,000 square feet) consume about 75% of the energy used in these buildings, which means there is a great potential for energy savings with integrated technologies and building retrofit solutions, such as HVAC and envelope integration, and window and lighting integration. The primary focus of this study is to compare the annual performance of different types of HVAC equipment in existing small- and medium-sized commercial buildings, and to identify appropriate HVAC systems that could be retrofit into different commercial building types in a cost effective manner. Prototypical building types and characteristics for baseline models are proposed based on the CBECS 2003 microdata; and annual energy simulation results from EnergyPlus are utilized to analyze the different HVAC retrofit technology options
The Exchange Gate in Solid State Spin Quantum Computation: The Applicability of the Heisenberg Model
Solid state quantum computing proposals rely on adiabatic operations of the
exchange gate among localized spins in nanostructures. We study corrections to
the Heisenberg interaction between lateral semiconductor quantum dots in an
external magnetic field. Using exact diagonalization we obtain the regime of
validity of the adiabatic approximation. We also find qualitative corrections
to the Heisenberg model at high magnetic fields and in looped arrays of spins.
Looped geometries of localized spins generate flux dependent, multi-spin terms
which go beyond the basic Heisenberg model.Comment: 13 pages, 8 figure
InGaN nano-ring structures for high-efficiency light emitting diodes
A technique based on the Fresnel diffraction effect for the fabrication of nano-scale site-controlled ring structures in InGaN/GaN multi-quantum well structures has been demonstrated. The ring structures have an internal diameter of 500 nm and a wall width of 300 nm. A 1 cm-1 Raman shift has been measured, signifying substantial strain relaxation from the fabricated structure. The 9 nm blueshift observed in the cathodoluminescence spectra can be attributed to band filling and/or screening of the piezoelectric field. A light emitting diode based on this geometry has been demonstrated
Spin-Orbit Coupling in Iridium-Based 5d Compounds Probed by X-ray Absorption Spectroscopy
We have performed x-ray absorption spectroscopy (XAS) measurements on a
series of Ir-based 5d transition metal compounds, including Ir, IrCl3, IrO2,
Na2IrO3, Sr2IrO4, and Y2Ir2O7. By comparing the intensity of the "white-line"
features observed at the Ir L2 and L3 absorption edges, it is possible to
extract valuable information about the strength of the spin-orbit coupling in
these systems. We observe remarkably large, non-statistical branching ratios in
all Ir compounds studied, with little or no dependence on chemical composition,
crystal structure, or electronic state. This result confirms the presence of
strong spin-orbit coupling effects in novel iridates such as Sr2IrO4, Na2IrO3,
and Y2Ir2O7, and suggests that even simple Ir-based compounds such as IrO2 and
IrCl3 may warrant further study. In contrast, XAS measurements on Re-based 5d
compounds, such as Re, ReO2, ReO3, and Ba2FeReO6, reveal statistical branching
ratios and negligible spin-orbit coupling effects.Comment: 9 pages, 4 figure
- …