92,373 research outputs found

    Phonon-phason coupling in icosahedral quasicrystals

    Full text link
    From relaxation simulations of decoration-based quasicrystal structure models using microscopically based interatomic pair potentials, we have calculated the (usually neglected) phonon-phason coupling constant. Its sign is opposite for the two alloys studied, i-AlMn and i-(Al,Cu)Li; a dimensionless measure of its magnitude relative to the phonon and phason elastic constants is of order 1/10, suggesting its effects are small but detectable. We also give a criterion for when phonon-phason effects are noticeable in diffuse tails of Bragg peaks.Comment: 7 pages, LaTeX, uses Europhys Lett macros (included

    Quantum interference in nested d-wave superconductors: a real-space perspective

    Full text link
    We study the local density of states around potential scatterers in d-wave superconductors, and show that quantum interference between impurity states is not negligible for experimentally relevant impurity concentrations. The two impurity model is used as a paradigm to understand these effects analytically and in interpreting numerical solutions of the Bogoliubov-de Gennes equations on fully disordered systems. We focus primarily on the globally particle-hole symmetric model which has been the subject of considerable controversy, and give evidence that a zero-energy delta function exists in the DOS. The anomalous spectral weight at zero energy is seen to arise from resonant impurity states belonging to a particular sublattice, exactly as in the 2-impurity version of this model. We discuss the implications of these findings for realistic models of the cuprates.Comment: 12 pages, 10 figs, submitted to Phys. Rev.

    Two impurities in a d-wave superconductor:local density of states

    Full text link
    We study the problem of two local potential scatterers in a d-wave superconductor, and show how quasiparticle bound state wave functions interfere. Each single-impurity electron and hole resonance energy is in general split in the presence of a second impurity into two, corresponding to one even parity and one odd parity state. We calculate the local density of states (LDOS), and argue that scanning tunneling microscopy (STM) measurements should be capable of extracting information about the Green's function in the pure system by a systematic study of 2-impurity configurations. In some configurations highly localized, long-lived states are predicted. We discuss the effects of realistic band structures, and how 2-impurity STM measurements could help distinguish between current explanations of LDOS impurity spectra in the BSCCO-2212 system.Comment: 16 pages,21 figure,New Version to be Published on P.R.

    Numerical simulations of negative-index refraction in wedge-shaped metamaterials

    Full text link
    A wedge-shaped structure made of split-ring resonators (SRR) and wires is numerically simulated to evaluate its refraction behavior. Four frequency bands, namely, the stop band, left-handed band, ultralow-index band, and positive-index band, are distinguished according to the refracted field distributions. Negative phase velocity inside the wedge is demonstrated in the left-handed band and the Snell's law is conformed in terms of its refraction behaviors in different frequency bands. Our results confirmed that negative index of refraction indeed exists in such a composite metamaterial and also provided a convincing support to the results of previous Snell's law experiments.Comment: 18 pages, 6 figure

    Spin Susceptibility of a 2D Electron System in GaAs towards the Weak Interaction Region

    Full text link
    We determine the spin susceptibility χ\chi in the weak interaction regime of a tunable, high quality, two-dimensional electron system in a GaAs/AlGaAs heterostructure. The band structure effects, modifying mass and g-factor, are carefully taken into accounts since they become appreciable for the large electron densities of the weak interaction regime. When properly normalized, χ\chi decreases monotonically from 3 to 1.1 with increasing density over our experimental range from 0.1 to 4×1011cm−24\times10^{11} cm^{-2}. In the high density limit, χ\chi tends correctly towards χ→1\chi\to 1 and compare well with recent theory.Comment: Submitted to Physical Review
    • …
    corecore