103,289 research outputs found
Conditions for Nondistortion Interrogation of Quantum System
Under some physical considerations, we present a universal formulation to
study the possibility of localizing a quantum object in a given region without
disturbing its unknown internal state. When the interaction between the object
and probe wave function takes place only once, we prove the necessary and
sufficient condition that the object's presence can be detected in an initial
state preserving way. Meanwhile, a conditioned optimal interrogation
probability is obtained.Comment: 5 pages, Revtex, 1 figures, Presentation improved, corollary 1 added.
To appear in Europhysics Letter
Efficient algorithm for mobile multicast using anycast group
The authors present a novel and efficient multicast algorithm that aims to reduce delay and communication cost for the registration between mobile nodes and mobility agents and solicitation for foreign agent services based on the mobile IP. The protocol applies anycast group technology to support multicast transmissions for both mobile nodes and home/foreign agents. Mobile hosts use anycast tunnelling to connect to the nearest available home/foreign agent where an agent is able to forward the multicast messages by selecting an anycast route to a multicast router so as to reduce the end-to-end delay. The performance analysis and experiments demonstrated that the proposed algorithm is able to enhance the performance over existing remote subscription and bidirectional tunnelling approaches regardless of the locations of mobile nodes/hosts<br /
The low-noise optimisation method for gearbox in consideration of operating conditions
This paper presents a comprehensive procedure to calculate the steady dynamic response and the noise radiation generated from a stepping-down gearbox. In this process, the dynamic model of the cylindrical gear transmission system is built with the consideration of the time-varying mesh stiffness, gear errors and bearing supporting, while the data of dynamic bearing force is obtained through solving the model. Furthermore, taking the data of bearing force as the excitation, the gearbox vibrations and noise radiation are calculated by numerical simulation, and then the time history of node dynamic response, noise spectrum and resonance frequency range of the gearbox are obtained. Finally, the gearbox panel acoustic contribution at the resonance frequency range is calculated. Based on the conclusions from the gearbox panel acoustic contribution analyses and the mode shapes, two gearbox stiffness improving plans have been studied. By contrastive analysis of gearbox noise radiation, the effectiveness of the improving plans is confirmed. This study has provided useful theoretical guideline to the gearbox design
Recommended from our members
Advances and challenges in commercializing radiative cooling
Radiative cooling (RC) dissipates terrestrial heat to outer space through the atmospheric window, without external energy input and production of environmental pollutants. More and more efforts have been devoted to this clean promising cooling technology; thus diverse radiative coolers have emerged. However, the performance, cost, and effectiveness of various radiative coolers are not exactly the same. In addition, the large-scale application of RC technology is impeded by the low energy density, uncontrollable cooling power, and limited sky-facing area. Here, we critically review the recent progress of RC technology, evaluate the cooling performance of various radiative coolers, and discuss the challenges and feasible solutions to commercialize RC technology. Furthermore, valuable insights are provided to make new breakthroughs in this field
Effects of Cutoff Functions of Tersoff Potentials on Molecular Dynamics Simulations of Thermal Transport
Past molecular dynamics studies of thermal transport have predominantly used
Stillinger-Weber potentials. As materials continuously shrink, their properties
increasingly depend on defect and surface effects. Unfortunately,
Stillinger-Weber potentials are best used for diamond-cubic-like bulk crystals.
They cannot represent the energies of many metastable phases, nor can they
accurately predict the energetics of defective and surface regions. To study
nanostructured materials, where these regions can dominate thermal transport,
the accuracy of Tersoff potentials in representing these structures is more
desirable. Based upon an analysis of thermal transport in a GaN system, we
demonstrate that the cutoff function of the existing Tersoff potentials may
lead to problems in determining the thermal conductivity. To remedy this issue,
improved cutoff schemes are proposed and evaluated
Characterization of the Torsional Piezoelectric-like Response of Tantalum Trisulfide Associated with Charge-Density-Wave Depinning
We have studied the frequency and voltage dependence of voltage-induced
torsional strains in orthorhombic TaS3 [V. Ya. Pokrovskii, et al, Phys. Rev.
Lett. 98, 206404 (2007)] by measuring the modulation of the resonant frequency
of an RF cavity containing the sample. The strain has an onset voltage below
the charge-density-wave (CDW) threshold voltages associated with changes in
shear compliance and resistance, suggesting that the strain is associated with
polarization of the CDW rather than CDW current. Measurements with square-wave
voltages show that the strain is very sluggish, not even reaching its dc value
at a frequency of 0.1 Hz, but the dynamics appear to be very sample dependent.
By applying oscillating torque while biasing the sample with a dc current, we
have also looked for strain induced voltage in the sample; none is observed at
the low biases where the voltage-induced strains first occur, but an induced
voltage is observed at higher biases, probably associated with strain-dependent
CDW conductance.Comment: 11 pages, including 3 figures, to be published in Phys. Rev. B (Rapid
Comm.
- …