15 research outputs found
Recommended from our members
Cratering behavior in single- and poly-crystalline copper irradiated by an intense pulsed ion beam
When treated with intense pulsed ion beams (IPIB), many materials exhibit increased wear resistance, fatigue life, and hardness. However, this treatment often results in cratering and roughening of the surface. In this work, high purity single crystal and polycrystalline copper samples were irradiated with pulses from an IPIB to gain insight into the causes of this cratering behavior. Samples were treated with 1,2,5, and 10 shots at 2 J/cm{sup 2} and 5 J/cm{sup 2} average energy fluence per shot. Shots were about 400 ns in duration and consisted of a mixture of carbon, hydrogen, and oxygen ions at 300 keV. It was found that the single crystal copper cratered far less than the polycrystalline copper at the lower energy fluence. At the higher energy fluence, cratering was replaced by other forms of surface damage, and the single crystal copper sustained less damage at all but the largest number of shots. Molten debris from the Lucite anode (the ion source) was removed and redeposited on the samples with each shot
Recommended from our members
Preparation of thin films by ablation with ANACONDA ion beam generator
Thin films of silicon carbide are produced by using the technology of ion beam evaporation. Various analytical methods are used to analyze film thickness, film composition and crystallization for samples obtained with different target-substrate distances
Recommended from our members
Deposition and surface treatment with intense pulsed ion beams
Intense pulsed ion beams (500 keV, 30 kA, 0.5 {mu}s) are being investigated for materials processing. Demonstrated and potential applications include film deposition, glazing and joining, alloying and mixing, cleaning and polishing, corrosion improvement, polymer surface treatments, and nanophase powder synthesis. Initial experiments at Los Alamos have emphasized thin-film formation by depositing beam ablated target material on substrates. We have deposited films with complex stoichiometry such as YBa{sub 2}Cu{sub 3}O{sub 7-x}, and formed diamond-like-carbon films. Instantaneous deposition rates of 1 mm/sec have been achieved because of the short ion range (typically 1{mu}m), excellent target coupling, and the inherently high energy of these beams. Currently the beams are produced in single shot uncomplicated diodes with good electrical efficiency. High-voltage modulator technology and diodes capable of repetitive firing, needed for commercial application, are being developed
Substrate Heating Measurements in Pulsed Ion Beam Film Deposition
Diamond-like Carbon (DLC) films have been deposited at Los Alamos National Laboratory by pulsed ion beam ablation of graphite targets. The targets were illuminated by an intense beam of hydrogen, carbon, and oxygen ions at a fluence of 15-45 J/cm{sup 2}. Ion energies were on the order of 350 keV, with beam current rising to 35 kA over a 400 ns ion current pulse. Raman spectra of the deposited films indicate an increasing ratio of sp{sup 3} to sp{sup 2} bonding as the substrate is moved further away from the target and further off the target normal. Using a thin film platinum resistor at varying positions, we have measured the heating of the substrate surface due to the kinetic energy and heat of condensation of the ablated material. This information is used to determine if substrate heating is responsible for the lack of DLC in positions close to the target and near the target normal. Latest data and analysis will be presented
Recommended from our members
Performance of the 10-kV, 5-MA pulsed-power system for the FRX-C compression experiment
Performance data are presented for the 10-kV, 5-MA, 1.5-MJ pulsed-power system developed for the Los Alamos magnetic fusion facility FRX-C. This system energizes a low-inductance magnet for the high-power, compression heating of compact toroid plasmas. An ignitron-switched, 20-mF, 10-kV, 4-MA capacitor bank is discharged to produce the main compression field, while an inductively-isolated, 10-mF, 10-kV, 1-MA bank generates an initial magnetic field to accept the translated plasma. To date, the complete system has successfully operated for two years and approximately 2000 high-power discharges. Component performance during typical and fault-mode operation is reviewed. 5 refs., 5 figs
Recommended from our members
Design and performance of the 10-kV, 5-MA pulsed-power system for the FRX-C compression experiment
The design and performance of the pulsed-power system for the FRX-C compact toroid compression heating experiment are reviewed. Two inductively-isolated, 10-kV capacitor banks (total energy = 1.5 MJ) are discharged through a common, low-inductance load. The 5-MA currents are switched and crowbarred with parallel arrays of size-D ignitrons. Power supplies are constructed in simple 25 and 50 kJ modules, each capable of supplying 100 kA at 10 kV. Non-negligible source inductance and the addition of high-power resistors maintain module isolation and protect the system during fault modes. 21 refs., 31 figs
Recommended from our members
Substrate heating measurements in pulsed ion beam film deposition
Diamond-like Carbon (DLC) films have been deposited at Los Alamos National Laboratory by pulsed ion beam ablation of graphite targets. The targets were illuminated by an intense beam of hydrogen, carbon, and oxygen ions at a fluence of 15-45 J/cm{sup 2}. Ion energies were on the order of 350 keV, with beam current rising to 35 kA over a 400 ns ion current pulse. Raman spectra of the deposited films indicate an increasing ratio of sp{sup 3} to sp{sup 2} bonding as the substrate is moved further away from the target and further off the target normal. Using a thin film platinum resistor at varying positions, we have measured the heating of the substrate surface due to the kinetic energy and heat of condensation of the ablated material. This information is used to determine if substrate heating is responsible for the lack of DLC in positions close to the target and near the target normal. Latest data and analysis will be presented
Development of the Los Alamos continuous high average-power microsecond pulser ion accelerator
The continuous high average-power microsecond pulser (CHAMP) ion accelerator is being constructed at Los Alamos National Laboratory. Progress on the testing of the CHAMP diode is discussed. A direct simulation Monte Carlo computer code is used to investigate the puffed gas fill of the CHAMP anode. High plenum pressures and low plenum volumes are found to be desirable for effective gas puffs. The typical gas fill time is 150–180 μs from initiation of valve operation to end of fill. Results of anode plasma production at three stages of development are discussed. Plasma properties are monitored with electric and magnetic field probes. From this data, the near coil plasma density under nominal conditions is found to be on the order of 1×10161×1016 cm−3. Large error is associated with this calculation due to inconsistencies between tests and the limitations of the instrumentation used. The diode insulating magnetic field is observed to result in lower density plasma with a more diffuse structure than for the cases when the insulating field is not applied. The importance of these differences in plasma quality on the beam production is yet to be determined. © 2000 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/69402/2/RSINAK-71-10-3677-1.pd
Recommended from our members
Deposition of DLC via intense ion beam ablation
Diamond-like carbon films were prepared by high intensity pulsed ion beam ablation of graphite targets. A 350 key, 35 kA, 400 ns pulse width beam, consisting primarily of carbon ions and protons, was focused onto a graphite target at a fluence of 15-45J/cm{sup 2}. Films were deposited onto substrates positioned i.n q n angular array from normal to the target to 90{degrees} off normal. Deposition rates up to 30 nm per pulse, corresponding to an instantaneous deposition rate greater than I mn/sec, have been observed. Electrical resistivities between 1 and 1000 ohm-cm were measured for these films. XRD scans showed that no crystalline structure developed in the films. SEM revealed that the bulk of the films contain material with feature sizes on the order of 100 nm, but micron size particles were deposited as well. Both Raman and electron energy loss spectroscopy indicated significant amounts of sp{sup 3} bonded carbon present in most of the films
Recommended from our members
Ion Beam and Plasma Technology Development for Surface Modification at Los Alamos National Laboratory
We are developing two high-throughput technologies for materials modification. The first is a repetitive intense ion beam source for materials modification through rapid surface melt and resolidification (up to 10{sup 10} deg/sec cooling rates) and for ablative deposition of coatings. The short range of the ions (typically 0.1 to 5 micrometers) allows vaporization or melting at moderate beam energy density (typically 1-50 J/cm{sup 2}). A new repetitive intense ion beam accelerator called CHAMP is under development at Los Alamos. The design beam parameters are: E=200 keV, I=15 kA, {tau}=1 {micro}s, and 1 Hz. This accelerator will enable applications such as film deposition, alloying and mixing, cleaning and polishing, corrosion and wear resistance, polymer surface treatments, and nanophase powder synthesis. The second technology is plasma source ion implantation (PSII) using plasmas generated from both gas phase (using radio frequency excitation) and solid phase (using a cathodic arc) sources. We have used PSII to directly implant ions for surface modification or as method for generating graded interfaces to enhance the adhesion of surface coatings. Surfaces with areas of up to 16 m{sup 2} and weighing more than a thousand kilograms have been treated in the Los Alamos PSII chamber. In addition, PSII in combination with cathodic source deposition has been used to form highly adherent, thick Er{sub 2}O{sub 3} coatings on steel for reactive metal containment in casting. These coatings resist delamination under extreme mechanical and thermal stress