518 research outputs found

    A Hybrid Thermal Video and FTIR Spectrometer System for Rapidly Locating and Characterizing Gas Leaks

    Get PDF
    Undiscovered gas leaks, known as fugitive emissions, in chemical plants and refinery operations can impact regional air quality and present a loss of product for industry. Surveying a facility for potential gas leaks can be a daunting task. Industrial leak detection and repair programs can be expensive to administer. An efficient, accurate and cost effective method for detecting and quantifying gas leaks would both save industries money by identifying production losses and improve regional air quality. Specialized thermal video systems have proven effective in rapidly locating gas leaks. These systems, however, do not have the spectral resolution for compound identification. Passive FTIR spectrometers can be used for gas compound identification, but using these systems for facility surveys is problematic due to their small field of view. A hybrid approach has been developed that utilizes the thermal video system to locate gas plumes using real time visualization of the leaks, coupled with the high spectral resolution FTIR spectrometer for compound identification and quantification. The prototype hybrid video/spectrometer system uses a sterling cooled thermal camera, operating in the MWIR (3-5 µm) with an additional notch filter set at around 3.4 µm, which allows for the visualization of gas compounds that absorb in this narrow spectral range, such as alkane hydrocarbons. This camera is positioned alongside of a portable, high speed passive FTIR spectrometer, which has a spectral range of 2 – 25 µm and operates at 4 cm-1 resolution. This system uses a 10 cm telescope foreoptic with an onboard blackbody for calibration. The two units are optically aligned using a turning mirror on the spectrometer’s telescope with the video camera’s output

    Interstellar Polarization in the Taurus Dark Clouds, Wavelength Dependent Position Angles and Cloud Structure Near TMC-1

    Full text link
    We use polarimetric observations of two stars (HD29647, HD283809) in the general direction of TMC-1 in the Taurus Dark Cloud to investigate grain properties and cloud structure in this region. We show the data to be consistent with a simple two-component model, in which general interstellar polarization in the Taurus Cloud is produced by a widely distributed cloud component with relatively uniform magnetic field orientation; the light from stars close to TMC-1 suffers additional polarization arising in one (or more) subcloud(s) with larger average grain size and different magnetic field directions compared with the general trend. Towards HD29647, in particular, we show that the unusually low degree of visual polarization relative to extinction is due to the presence of distinct cloud components in the line of sight with markedly different magnetic field orientations. Stokes parameter calculations allow us to separate out the polarization characteristics of the individual components. Results are fit with the Serkowski empirical formula to determine the degree and wavelength of maximum polarization. Whereas lambda_max values in the widely distributed material are similar to the average (0.55um) for the diffuse interstellar medium, the subcloud in line of sight to HD~283809, the most heavily reddened star in our study, has lambda_max approx. 0.73um, indicating the presence of grains about 30% larger than this average. Our model also predicts detectable levels of circular polarization toward both HD~29647 and HD~283809.Comment: 17 pages including 6 figures, LaTeX, to appear in the Astrophysical Journal, vol 48

    Matched Filter Stochastic Background Characterization for Hyperspectral Target Detection

    Get PDF
    Algorithms exploiting hyperspectral imagery for target detection have continually evolved to provide improved detection results. Adaptive matched filters can be used to locate spectral targets by modeling scene background as either structured (geometric) with a set of endmembers (basis vectors) or as unstructured (stochastic) with a covariance or correlation matrix. These matrices are often calculated using all available pixels in a data set. In unstructured background research, various techniques for improving upon scene-wide methods have been developed, each involving either the removal of target signatures from the background model or the segmentation of image data into spatial or spectral subsets. Each of these methods increase the detection signal-to-background ratio (SBR) and the multivariate normality (MVN) of the data from which background statistics are calculated, thus increasing separation between target and non-target species in the detection statistic and ultimately improving thresholded target detection results. Such techniques for improved background characterization are widely practiced but not well documented or compared. This paper provides a review and comparison of methods in target exclusion, spatial subsetting and spectral pre-clustering, and introduces a new technique which combines these methods. The analysis provides insight into the merit of employing unstructured background characterization techniques, as well as limitations for their practical application

    Is Mn-Bound Substrate Water Protonated in the S2 State of Photosystem II?

    Get PDF
    In spite of great progress in resolving the geometric structure of the water-splitting Mn4OxCa cluster in photosystem II, the binding sites and modes of the two substrate water molecules are still insufficiently characterized. While time-resolved membrane-inlet mass spectrometry measurements indicate that both substrate water molecules are bound to the oxygen-evolving complex (OEC) in the S2 and S3 states (Hendry and Wydrzynski in Biochemistry 41:13328–13334, 2002), it is not known (1) if they are both Mn-bound, (2) if they are terminal or bridging ligands, and (3) in what protonation state they are bound in the different oxidation states Si (i = 0, 1, 2, 3, 4) of the OEC. By employing 17O hyperfine sublevel correlation (HYSCORE) spectroscopy we recently demonstrated that in the S2 state there is only one (type of) Mn-bound oxygen that is water exchangeable. We therefore tentatively identified this oxygen as one substrate ‘water’ molecule, and on the basis of the finding that it has a hyperfine interaction of about 10 MHz with the electron spin of the Mn4OxCa cluster, we suggest that it is bound as a Mn–O–Mn bridge within a bis-μ2 oxo-bridged unit (Su et al. in J Am Chem Soc 130:786–787, 2008). Employing pulse electron paramagnetic resonance, 1H/2H Mims electron-nuclear double resonance and 2H-HYSCORE spectroscopies together with 1H/2H-exchange here, we test this hypothesis by probing the protonation state of this exchangeable oxygen. We conclude that this oxygen is fully deprotonated. This result is discussed in the light of earlier reports in the literature

    Early Predictors of Anemia in Patients With Hepatitis C Genotype 1 Treated With Peginterferon Alfa-2a (40KD) Plus Ribavirin

    Get PDF
    Adherence to ribavirin is one factor that is critically important in the treatment of hepatitis C virus infection. However, ribavirin can be associated with clinically significant hemolytic anemia resulting in dose modifications in up to one-quarter of patients. Currently, baseline predictors of considerable anemia are not sufficiently discriminating for routine therapeutic intervention. The objective of this analysis was to elucidate baseline and on-treatment factors predictive of a considerable hemoglobin drop at week 4

    Species Used for Drug Testing Reveal Different Inhibition Susceptibility for 17beta-Hydroxysteroid Dehydrogenase Type 1

    Get PDF
    Steroid-related cancers can be treated by inhibitors of steroid metabolism. In searching for new inhibitors of human 17beta-hydroxysteroid dehydrogenase type 1 (17β-HSD 1) for the treatment of breast cancer or endometriosis, novel substances based on 15-substituted estrone were validated. We checked the specificity for different 17β-HSD types and species. Compounds were tested for specificity in vitro not only towards recombinant human 17β-HSD types 1, 2, 4, 5 and 7 but also against 17β-HSD 1 of several other species including marmoset, pig, mouse, and rat. The latter are used in the processes of pharmacophore screening. We present the quantification of inhibitor preferences between human and animal models. Profound differences in the susceptibility to inhibition of steroid conversion among all 17β-HSDs analyzed were observed. Especially, the rodent 17β-HSDs 1 were significantly less sensitive to inhibition compared to the human ortholog, while the most similar inhibition pattern to the human 17β-HSD 1 was obtained with the marmoset enzyme. Molecular docking experiments predicted estrone as the most potent inhibitor. The best performing compound in enzymatic assays was also highly ranked by docking scoring for the human enzyme. However, species-specific prediction of inhibitor performance by molecular docking was not possible. We show that experiments with good candidate compounds would out-select them in the rodent model during preclinical optimization steps. Potentially active human-relevant drugs, therefore, would no longer be further developed. Activity and efficacy screens in heterologous species systems must be evaluated with caution

    On-line mass spectrometry: membrane inlet sampling

    Get PDF
    Significant insights into plant photosynthesis and respiration have been achieved using membrane inlet mass spectrometry (MIMS) for the analysis of stable isotope distribution of gases. The MIMS approach is based on using a gas permeable membrane to enable the entry of gas molecules into the mass spectrometer source. This is a simple yet durable approach for the analysis of volatile gases, particularly atmospheric gases. The MIMS technique strongly lends itself to the study of reaction flux where isotopic labeling is employed to differentiate two competing processes; i.e., O2 evolution versus O2 uptake reactions from PSII or terminal oxidase/rubisco reactions. Such investigations have been used for in vitro studies of whole leaves and isolated cells. The MIMS approach is also able to follow rates of isotopic exchange, which is useful for obtaining chemical exchange rates. These types of measurements have been employed for oxygen ligand exchange in PSII and to discern reaction rates of the carbonic anhydrase reactions. Recent developments have also engaged MIMS for online isotopic fractionation and for the study of reactions in inorganic systems that are capable of water splitting or H2 generation. The simplicity of the sampling approach coupled to the high sensitivity of modern instrumentation is a reason for the growing applicability of this technique for a range of problems in plant photosynthesis and respiration. This review offers some insights into the sampling approaches and the experiments that have been conducted with MIMS
    • …
    corecore