1,941 research outputs found

    Critical Collapse of an Ultrarelativistic Fluid in the Γ1\Gamma\to 1 Limit

    Full text link
    In this paper we investigate the critical collapse of an ultrarelativistic perfect fluid with the equation of state P=(Γ1)ρP=(\Gamma-1)\rho in the limit of Γ1\Gamma\to 1. We calculate the limiting continuously self similar (CSS) solution and the limiting scaling exponent by exploiting self-similarity of the solution. We also solve the complete set of equations governing the gravitational collapse numerically for (Γ1)=102,...,106(\Gamma-1) = 10^{-2},...,10^{-6} and compare them with the CSS solutions. We also investigate the supercritical regime and discuss the hypothesis of naked singularity formation in a generic gravitational collapse. The numerical calculations make use of advanced methods such as high resolution shock capturing evolution scheme for the matter evolution, adaptive mesh refinement, and quadruple precision arithmetic. The treatment of vacuum is also non standard. We were able to tune the critical parameter up to 30 significant digits and to calculate the scaling exponents accurately. The numerical results agree very well with those calculated using the CSS ansatz. The analysis of the collapse in the supercritical regime supports the hypothesis of the existence of naked singularities formed during a generic gravitational collapse.Comment: 23 pages, 16 figures, revised version, added new results of investigation of a supercritical collapse and the existence of naked singularities in generic gravitational collaps

    Type II critical phenomena of neutron star collapse

    Full text link
    We investigate spherically-symmetric, general relativistic systems of collapsing perfect fluid distributions. We consider neutron star models that are driven to collapse by the addition of an initially "in-going" velocity profile to the nominally static star solution. The neutron star models we use are Tolman-Oppenheimer-Volkoff solutions with an initially isentropic, gamma-law equation of state. The initial values of 1) the amplitude of the velocity profile, and 2) the central density of the star, span a parameter space, and we focus only on that region that gives rise to Type II critical behavior, wherein black holes of arbitrarily small mass can be formed. In contrast to previously published work, we find that--for a specific value of the adiabatic index (Gamma = 2)--the observed Type II critical solution has approximately the same scaling exponent as that calculated for an ultrarelativistic fluid of the same index. Further, we find that the critical solution computed using the ideal-gas equations of state asymptotes to the ultrarelativistic critical solution.Comment: 24 pages, 22 figures, RevTeX 4, submitted to Phys. Rev.

    Accurate discretization of advection-diffusion equations

    Full text link
    We present an exact mathematical transformation which converts a wide class of advection-diffusion equations into a form allowing simple and direct spatial discretization in all dimensions, and thus the construction of accurate and more efficient numerical algorithms. These discretized forms can also be viewed as master equations which provides an alternative mesoscopic interpretation of advection-diffusion processes in terms of diffusion with spatially varying hopping rates

    A model for shock wave chaos

    Full text link
    We propose the following model equation: ut+1/2(u2uus)x=f(x,us),u_{t}+1/2(u^{2}-uu_{s})_{x}=f(x,u_{s}), that predicts chaotic shock waves. It is given on the half-line x<0x<0 and the shock is located at x=0x=0 for any t0t\ge0. Here us(t)u_{s}(t) is the shock state and the source term ff is assumed to satisfy certain integrability constraints as explained in the main text. We demonstrate that this simple equation reproduces many of the properties of detonations in gaseous mixtures, which one finds by solving the reactive Euler equations: existence of steady traveling-wave solutions and their instability, a cascade of period-doubling bifurcations, onset of chaos, and shock formation in the reaction zone.Comment: 4 pages, 4 figure

    On the scaling of entropy viscosity in high order methods

    Full text link
    In this work, we outline the entropy viscosity method and discuss how the choice of scaling influences the size of viscosity for a simple shock problem. We present examples to illustrate the performance of the entropy viscosity method under two distinct scalings

    Finite difference lattice Boltzmann model with flux limiters for liquid-vapor systems

    Full text link
    In this paper we apply a finite difference lattice Boltzmann model to study the phase separation in a two-dimensional liquid-vapor system. Spurious numerical effects in macroscopic equations are discussed and an appropriate numerical scheme involving flux limiter techniques is proposed to minimize them and guarantee a better numerical stability at very low viscosity. The phase separation kinetics is investigated and we find evidence of two different growth regimes depending on the value of the fluid viscosity as well as on the liquid-vapor ratio.Comment: 10 pages, 10 figures, to be published in Phys. Rev.

    Head-on collisions of binary white dwarf--neutron stars: Simulations in full general relativity

    Full text link
    We simulate head-on collisions from rest at large separation of binary white dwarf -- neutron stars (WDNSs) in full general relativity. Our study serves as a prelude to our analysis of the circular binary WDNS problem. We focus on compact binaries whose total mass exceeds the maximum mass that a cold degenerate star can support, and our goal is to determine the fate of such systems. A fully general relativistic hydrodynamic computation of a realistic WDNS head-on collision is prohibitive due to the large range of dynamical time scales and length scales involved. For this reason, we construct an equation of state (EOS) which captures the main physical features of NSs while, at the same time, scales down the size of WDs. We call these scaled-down WD models "pseudo-WDs (pWDs)". Using pWDs, we can study these systems via a sequence of simulations where the size of the pWD gradually increases toward the realistic case. We perform two sets of simulations; One set studies the effects of the NS mass on the final outcome, when the pWD is kept fixed. The other set studies the effect of the pWD compaction on the final outcome, when the pWD mass and the NS are kept fixed. All simulations show that 14%-18% of the initial total rest mass escapes to infinity. All remnant masses still exceed the maximum rest mass that our cold EOS can support (1.92 solar masses), but no case leads to prompt collapse to a black hole. This outcome arises because the final configurations are hot. All cases settle into spherical, quasiequilibrium configurations consisting of a cold NS core surrounded by a hot mantle, resembling Thorne-Zytkow objects. Extrapolating our results to realistic WD compactions, we predict that the likely outcome of a head-on collision of a realistic, massive WDNS system will be the formation of a quasiequilibrium Thorne-Zytkow-like object.Comment: 24 pages, 14 figures, matches PRD published version, tests of HRSC schemes with piecewise polytropes adde

    Dynamics of Three Agent Games

    Full text link
    We study the dynamics and resulting score distribution of three-agent games where after each competition a single agent wins and scores a point. A single competition is described by a triplet of numbers pp, tt and qq denoting the probabilities that the team with the highest, middle or lowest accumulated score wins. We study the full family of solutions in the regime, where the number of agents and competitions is large, which can be regarded as a hydrodynamic limit. Depending on the parameter values (p,q,t)(p,q,t), we find six qualitatively different asymptotic score distributions and we also provide a qualitative understanding of these results. We checked our analytical results against numerical simulations of the microscopic model and find these to be in excellent agreement. The three agent game can be regarded as a social model where a player can be favored or disfavored for advancement, based on his/her accumulated score. It is also possible to decide the outcome of a three agent game through a mini tournament of two-a gent competitions among the participating players and it turns out that the resulting possible score distributions are a subset of those obtained for the general three agent-games. We discuss how one can add a steady and democratic decline rate to the model and present a simple geometric construction that allows one to write down the corresponding score evolution equations for nn-agent games

    Numerical evolution of multiple black holes with accurate initial data

    Full text link
    We present numerical evolutions of three equal-mass black holes using the moving puncture approach. We calculate puncture initial data for three black holes solving the constraint equations by means of a high-order multigrid elliptic solver. Using these initial data, we show the results for three black hole evolutions with sixth-order waveform convergence. We compare results obtained with the BAM and AMSS-NCKU codes with previous results. The approximate analytic solution to the Hamiltonian constraint used in previous simulations of three black holes leads to different dynamics and waveforms. We present some numerical experiments showing the evolution of four black holes and the resulting gravitational waveform.Comment: Published in PR
    corecore