1,832 research outputs found

    Liquid-Solid Phase Transition of the System with Two particles in a Rectangular Box

    Full text link
    We study the statistical properties of two hard spheres in a two dimensional rectangular box. In this system, the relation like Van der Waals equation loop is obtained between the width of the box and the pressure working on side walls. The auto-correlation function of each particle's position is calculated numerically. By this calculation near the critical width, the time at which the correlation become zero gets longer according to the increase of the height of the box. Moreover, fast and slow relaxation processes like α\alpha and β\beta relaxations observed in supper cooled liquid are observed when the height of the box is sufficiently large. These relaxation processes are discussed with the probability distribution of relative position of two particles.Comment: 6 figure

    Stanford Aerospace Research Laboratory research overview

    Get PDF
    Over the last ten years, the Stanford Aerospace Robotics Laboratory (ARL) has developed a hardware facility in which a number of space robotics issues have been, and continue to be, addressed. This paper reviews two of the current ARL research areas: navigation and control of free flying space robots, and modelling and control of extremely flexible space structures. The ARL has designed and built several semi-autonomous free-flying robots that perform numerous tasks in a zero-gravity, drag-free, two-dimensional environment. It is envisioned that future generations of these robots will be part of a human-robot team, in which the robots will operate under the task-level commands of astronauts. To make this possible, the ARL has developed a graphical user interface (GUI) with an intuitive object-level motion-direction capability. Using this interface, the ARL has demonstrated autonomous navigation, intercept and capture of moving and spinning objects, object transport, multiple-robot cooperative manipulation, and simple assemblies from both free-flying and fixed bases. The ARL has also built a number of experimental test beds on which the modelling and control of flexible manipulators has been studied. Early ARL experiments in this arena demonstrated for the first time the capability to control the end-point position of both single-link and multi-link flexible manipulators using end-point sensing. Building on these accomplishments, the ARL has been able to control payloads with unknown dynamics at the end of a flexible manipulator, and to achieve high-performance control of a multi-link flexible manipulator

    Long-Time Behavior of Velocity Autocorrelation Function for Interacting Particles in a Two-Dimensional Disordered System

    Full text link
    The long-time behavior of the velocity autocorrelation function (VACF) is investigated by the molecular dynamics simulation of a two-dimensional system which has both a many-body interaction and a random potential. With strengthening the random potential by increasing the density of impurities, a crossover behavior of the VACF is observed from a positive tail, which is proportional to t^{-1}, to a negative tail, proportional to -t^{-2}. The latter tail exists even when the density of particles is the same order as the density of impurities. The behavior of the VACF in a nonequilibrium steady state is also studied. In the linear response regime the behavior is similar to that in the equilibrium state, whereas it changes drastically in the nonlinear response regime.Comment: 12 pages, 5 figure

    Global Equation of State of two-dimensional hard sphere systems

    Full text link
    Hard sphere systems in two dimensions are examined for arbitrary density. Simulation results are compared to the theoretical predictions for both the low and the high density limit, where the system is either disordered or ordered, respectively. The pressure in the system increases with the density, except for an intermediate range of volume fractions 0.65ν0.750.65 \le \nu \le 0.75, where a disorder-order phase transition occurs. The proposed {\em global equation of state} (which describes the pressure {\em for all densities}) is applied to the situation of an extremely dense hard sphere gas in a gravitational field and shows reasonable agreement with both experimental and numerical data.Comment: 4 pages, 2 figure

    Magneto-Transport in the Two-Dimensional Lorentz Gas

    Full text link
    We consider the two-dimensional Lorentz gas with Poisson distributed hard disk scatterers and a constant magnetic field perpendicular to the plane of motion. The velocity autocorrelation is computed numerically over the full range of densities and magnetic fields with particular attention to the percolation threshold between hopping transport and pure edge currents. The Ohmic and Hall conductance are compared with mode-coupling theory and a recent generalized kinetic equation valid for low densities and small fields. We argue that the long time tail as t2t^{-2} persists for non-zero magnetic field.Comment: 7 pages, 14 figures. Uses RevTeX and epsfig.sty. Submitted to Physical Review

    Structure Effects on Coulomb Dissociation of 8^8B

    Get PDF
    Coulomb Dissociation provides an alternative method for determining the radiative capture cross sections at astrophysically relevant low relative energies. For the breakup of 8^8B on 58^{58}Ni, we calculate the total Coulomb Dissociation cross section and the angular distribution for E1, E2 and M1. Our calculations are performed first within the standard first order semiclassical theory of Coulomb Excitation, including the correct three body kinematics, and later including the projectile-target nuclear interactions.Comment: 6 pages, proceedings from International Workshop on RNB, Puri, India, January 1998 - to be published in J. Phys.

    Evaluation of a present-day climate simulation with a new coupled atmosphere-ocean model GENMOM

    Get PDF
    We present a new, non-flux corrected AOGCM, GENMOM, that combines the GENESIS version 3 atmospheric GCM (Global Environmental and Ecological Simulation of Interactive Systems) and MOM2 (Modular Ocean Model version 2) nominally at T31 resolution. We evaluate GENMOM by comparison with reanalysis products (e.g., NCEP2) and three models used in the IPCC AR4 assessment. GENMOM produces a global temperature bias of 0.6 °C. Atmospheric features such as the jet stream structure and major semi-permanent sea level pressure centers are well simulated as is the mean planetary-scale wind structure that is needed to produce the correct position of stormtracks. Most ocean surface currents are reproduced except where they are not resolvable at T31 resolution. Overall, GENMOM captures reasonably well the observed gradients and spatial distributions of annual surface temperature and precipitation and the simulations are on par with other AOGCMs. Deficiencies in the GENMOM simulations include a warm bias in the surface temperature over the southern oceans, a split in the ITCZ and weaker-than-observed overturning circulation

    Numerical Evidence for Divergent Burnett Coefficients

    Full text link
    In previous papers [Phys. Rev. A {\bf 41}, 4501 (1990), Phys. Rev. E {\bf 18}, 3178 (1993)], simple equilibrium expressions were obtained for nonlinear Burnett coefficients. A preliminary calculation of a 32 particle Lennard-Jones fluid was presented in the previous paper. Now, sufficient resources have become available to address the question of whether nonlinear Burnett coefficients are finite for soft spheres. The hard sphere case is known to have infinite nonlinear Burnett coefficients (ie a nonanalytic constitutive relation) from mode coupling theory. This paper reports a molecular dynamics caclulation of the third order nonlinear Burnett coefficient of a Lennard-Jones fluid undergoing colour flow, which indicates that this term is diverges in the thermodynamic limit.Comment: 12 pages, 9 figure

    Monte Carlo Study of an Extended 3-State Potts Model on the Triangular Lattice

    Full text link
    By introducing a chiral term into the Hamiltonian of the 3-state Potts model on a triangular lattice additional symmetries are achieved between the clockwise and anticlockwise states and the ferromagnetic state. This model is investigated using Monte Carlo methods. We investigate the full phase diagram and find evidence for a line tricritical points separating the ferromagnetic and antiferromagnetic phases.Comment: 6 pages, 10 figure
    corecore