640 research outputs found
Three and Four-Body Interactions in Spin-Based Quantum Computers
In the effort to design and to construct a quantum computer, several leading
proposals make use of spin-based qubits. These designs generally assume that
spins undergo pairwise interactions. We point out that, when several spins are
engaged mutually in pairwise interactions, the quantitative strengths of the
interactions can change and qualitatively new terms can arise in the
Hamiltonian, including four-body interactions. In parameter regimes of
experimental interest, these coherent effects are large enough to interfere
with computation, and may require new error correction or avoidance techniques.Comment: 5 pages incl. 4 figures. To appear in Phys. Rev. Lett. For an
expanded version including detailed calculations see
http://xxx.lanl.gov/abs/cond-mat/030201
Quantum derivation of the use of classical electromagnetic potentials in relativistic Coulomb excitation
We prove that a relativistic Coulomb excitation calculation in which the
classical electromagnetic field of the projectile is used to induce transitions
between target states gives the same target transition amplitudes, to all
orders of perturbation theory, as would a calculation in which the interaction
between projectile and target is mediated by a quantized electromagnetic field.Comment: 1 .zip file containing LaTex source plus three figures as .eps file
High energy cosmic-ray interactions with particles from the Sun
Cosmic-ray protons with energies above eV passing near the Sun may
interact with photons emitted by the Sun and be excited to a
resonance. When the decays, it produces pions which further decay to
muons and photons which may be detected with terrestrial detectors. A flux of
muons, photon pairs (from decay), or individual high-energy photons
coming from near the Sun would be a rather striking signature, and the flux of
these particles is a fairly direct measure of the flux of cosmic-ray nucleons,
independent of the cosmic-ray composition. In a solid angle within
around the Sun the flux of photon pairs is about \SI{1.3e-3}{}
particles/(kmyr), while the flux of muons is about \SI{0.33e-3}{}
particles/(kmyr). This is beyond the reach of current detectors like
the Telescope Array, Auger, KASCADE-Grande or IceCube. However, the muon flux
might be detectable by next-generation air shower arrays or neutrino detectors
such as ARIANNA or ARA. We discuss the experimental prospects in some detail.
Other cosmic-ray interactions occuring close to the Sun are also briefly
discussed.Comment: 8 pages, 11 figure
Photon-Mediated Interaction between Two Distant Atoms
We study the photonic interactions between two distant atoms which are
coupled by an optical element (a lens or an optical fiber) focussing part of
their emitted radiation onto each other. Two regimes are distinguished
depending on the ratio between the radiative lifetime of the atomic excited
state and the propagation time of a photon between the two atoms. In the two
regimes, well below saturation the dynamics exhibit either typical features of
a bad resonator, where the atoms act as the mirrors, or typical characteristics
of dipole-dipole interaction. We study the coherence properties of the emitted
light and show that it carries signatures of the multiple scattering processes
between the atoms. The model predictions are compared with the experimental
results in J. Eschner {\it et al.}, Nature {\bf 413}, 495 (2001).Comment: 18 pages, 15 figure
A new look at the problem of gauge invariance in quantum field theory
Quantum field theory is assumed to be gauge invariant. However it is well
known that when certain quantities are calculated using perturbation theory the
results are not gauge invariant. The non-gauge invariant terms have to be
removed in order to obtain a physically correct result. In this paper we will
examine this problem and determine why a theory that is supposed to be gauge
invariant produces non-gauge invariant results.Comment: Accepted by Physica Scripta. 27 page
Strongly correlated wave functions for artificial atoms and molecules
A method for constructing semianalytical strongly correlated wave functions
for single and molecular quantum dots is presented. It employs a two-step
approach of symmetry breaking at the Hartree-Fock level and of subsequent
restoration of total spin and angular momentum symmetries via Projection
Techniques. Illustrative applications are presented for the case of a
two-electron helium-like single quantum dot and a hydrogen-like quantum dot
molecule.Comment: 9 pages. Revtex with 2 GIF and 1 EPS figures. Published version with
extensive clarifications. A version of the manuscript with high quality
figures incorporated in the text is available at
http://calcite.physics.gatech.edu/~costas/qdhelproj.html For related papers,
see http://www.prism.gatech.edu/~ph274c
Primordial helium recombination II: two-photon processes
Interpretation of precision measurements of the cosmic microwave background
(CMB) will require a detailed understanding of the recombination era, which
determines such quantities as the acoustic oscillation scale and the Silk
damping scale. This paper is the second in a series devoted to the subject of
helium recombination, with a focus on two-photon processes in He I. The
standard treatment of these processes includes only the spontaneous two-photon
decay from the 2^1S level. We extend this treatment by including five
additional effects, some of which have been suggested in recent papers but
whose impact on He I recombination has not been fully quantified. These are:
(i) stimulated two-photon decays; (ii) two-photon absorption of redshifted HeI
line radiation; (iii) two-photon decays from highly excited levels in HeI (n^1S
and n^1D, with n>=3); (iv) Raman scattering; and (v) the finite width of the
2^1P^o resonance. We find that effect (iii) is highly suppressed when one takes
into account destructive interference between different intermediate states
contributing to the two-photon decay amplitude. Overall, these effects are
found to be insignificant: they modify the recombination history at the level
of several parts in 10^4.Comment: 19 pages, 11 figures, to be submitted to PR
Perfect Reflection of Light by an Oscillating Dipole
We show theoretically that a directional dipole wave can be perfectly
reflected by a single point-like oscillating dipole. Furthermore, we find that
in the case of a strongly focused plane wave up to 85 % of the incident light
can be reflected by the dipole. Our results hold for the full spectrum of the
electromagnetic interactions and have immediate implications for achieving
strong coupling between a single propagating photon and a single quantum
emitter.Comment: 3 figure
Size-dependence of Strong-Coupling Between Nanomagnets and Photonic Cavities
The coherent dynamics of a coupled photonic cavity and a nanomagnet is
explored as a function of nanomagnet size. For sufficiently strong coupling
eigenstates involving highly entangled photon and spin states are found, which
can be combined to create coherent states. As the size of the nanomagnet
increases its coupling to the photonic mode also monotonically increases, as
well as the number of photon and spin states involved in the system's
eigenstates. For small nanomagnets the crystalline anisotropy of the magnet
strongly localized the eigenstates in photon and spin number, quenching the
potential for coherent states. For a sufficiently large nanomagnet the
macrospin approximation breaks down and different domains of the nanomagnet may
couple separately to the photonic mode. Thus the optimal nanomagnet size is
just below the threshold for failure of the macrospin approximation.Comment: 10 pages, 7 figure
Radiation from accelerated perfect or dispersive mirrors following prescribed relativistic asymptotically inertial trajectories
We address the question of radiation emission from both perfect and
dispersive mirrors following prescribed relativistic trajectories. The
trajectories considered are asymptotically inertial: the mirror starts from
rest and eventually reverts to motion at uniform velocity. This enables us to
provide a description in terms of in and out states. We calculate exactly the
Bogolubov alpha and beta coefficients for a specific form of the trajectory,
and stress the analytic properties of the amplitudes and the constraints
imposed by unitarity. A formalism for the description of emission of radiation
from a dispersive mirror is presented.Comment: 7 figure
- …