154 research outputs found

    Hanle effect in coherent backscattering

    Get PDF
    We study the shape of the coherent backscattering (CBS) cone obtained when resonant light illuminates a thick cloud of laser-cooled rubidium atoms in presence of a homogenous magnetic field. We observe new magnetic field-dependent anisotropies in the CBS signal. We show that the observed behavior is due to the modification of the atomic radiation pattern by the magnetic field (Hanle effect in the excited state).Comment: 4 pages, 3 figure

    The Hanle Effect in 1D, 2D and 3D

    Full text link
    This paper addresses the problem of scattering line polarization and the Hanle effect in one-dimensional (1D), two-dimensional (2D) and three-dimensional (3D) media for the case of a two-level model atom without lower-level polarization and assuming complete frequency redistribution. The theoretical framework chosen for its formulation is the QED theory of Landi Degl'Innocenti (1983), which specifies the excitation state of the atoms in terms of the irreducible tensor components of the atomic density matrix. The self-consistent values of these density-matrix elements is to be determined by solving jointly the kinetic and radiative transfer equations for the Stokes parameters. We show how to achieve this by generalizing to Non-LTE polarization transfer the Jacobi-based ALI method of Olson et al. (1986) and the iterative schemes based on Gauss-Seidel iteration of Trujillo Bueno and Fabiani Bendicho (1995). These methods essentially maintain the simplicity of the Lambda-iteration method, but their convergence rate is extremely high. Finally, some 1D and 2D model calculations are presented that illustrate the effect of horizontal atmospheric inhomogeneities on magnetic and non-magnetic resonance line polarization signals.Comment: 14 pages and 5 figure

    A Substantial Amount of Hidden Magnetic Energy in the Quiet Sun

    Full text link
    Deciphering and understanding the small-scale magnetic activity of the quiet solar photosphere should help to solve many of the key problems of solar and stellar physics, such as the magnetic coupling to the outer atmosphere and the coronal heating. At present, we can see only ∌1{\sim}1% of the complex magnetism of the quiet Sun, which highlights the need to develop a reliable way to investigate the remaining 99%. Here we report three-dimensional radiative tranfer modelling of scattering polarization in atomic and molecular lines that indicates the presence of hidden, mixed-polarity fields on subresolution scales. Combining this modelling with recent observational data we find a ubiquitous tangled magnetic field with an average strength of ∌130{\sim}130 G, which is much stronger in the intergranular regions of solar surface convection than in the granular regions. So the average magnetic energy density in the quiet solar photosphere is at least two orders of magnitude greater than that derived from simplistic one-dimensional investigations, and sufficient to balance radiative energy losses from the solar chromosphere.Comment: 21 pages and 2 figures (letter published in Nature on July 15, 2004

    Spin relaxation in low-dimensional systems

    Full text link
    We review some of the newest findings on the spin dynamics of carriers and excitons in GaAs/GaAlAs quantum wells. In intrinsic wells, where the optical properties are dominated by excitonic effects, we show that exciton-exciton interaction produces a breaking of the spin degeneracy in two-dimensional semiconductors. In doped wells, the two spin components of an optically created two-dimensional electron gas are well described by Fermi-Dirac distributions with a common temperature but different chemical potentials. The rate of the spin depolarization of the electron gas is found to be independent of the mean electron kinetic energy but accelerated by thermal spreading of the carriers.Comment: 1 PDF file, 13 eps figures, Proceedings of the 1998 International Workshop on Nanophysics and Electronics (NPE-98)- Lecce (Italy

    Einstein's quantum theory of the monatomic ideal gas: non-statistical arguments for a new statistics

    Full text link
    In this article, we analyze the third of three papers, in which Einstein presented his quantum theory of the ideal gas of 1924-1925. Although it failed to attract the attention of Einstein's contemporaries and although also today very few commentators refer to it, we argue for its significance in the context of Einstein's quantum researches. It contains an attempt to extend and exhaust the characterization of the monatomic ideal gas without appealing to combinatorics. Its ambiguities illustrate Einstein's confusion with his initial success in extending Bose's results and in realizing the consequences of what later became to be called Bose-Einstein statistics. We discuss Einstein's motivation for writing a non-combinatorial paper, partly in response to criticism by his friend Ehrenfest, and we paraphrase its content. Its arguments are based on Einstein's belief in the complete analogy between the thermodynamics of light quanta and of material particles and invoke considerations of adiabatic transformations as well as of dimensional analysis. These techniques were well-known to Einstein from earlier work on Wien's displacement law, Planck's radiation theory, and the specific heat of solids. We also investigate the possible role of Ehrenfest in the gestation of the theory.Comment: 57 pp

    Resonant nonlinear magneto-optical effects in atoms

    Get PDF
    In this article, we review the history, current status, physical mechanisms, experimental methods, and applications of nonlinear magneto-optical effects in atomic vapors. We begin by describing the pioneering work of Macaluso and Corbino over a century ago on linear magneto-optical effects (in which the properties of the medium do not depend on the light power) in the vicinity of atomic resonances, and contrast these effects with various nonlinear magneto-optical phenomena that have been studied both theoretically and experimentally since the late 1960s. In recent years, the field of nonlinear magneto-optics has experienced a revival of interest that has led to a number of developments, including the observation of ultra-narrow (1-Hz) magneto-optical resonances, applications in sensitive magnetometry, nonlinear magneto-optical tomography, and the possibility of a search for parity- and time-reversal-invariance violation in atoms.Comment: 51 pages, 23 figures, to appear in Rev. Mod. Phys. in Oct. 2002, Figure added, typos corrected, text edited for clarit

    Zero-Field Dichroism in the Solar Chromosphere

    Full text link
    We explain the linear polarization of the Ca II infrared triplet observed close to the edge of the solar disk. In particular, we demonstrate that the physical origin of the enigmatic polarizations of the 866.2 nm and 854.2 nm lines lies in the existence of atomic polarization in their metastable lower levels, which produces differential absorption of polarization components (dichroism). To this end, we have solved the problem of the generation and transfer of polarized radiation by taking fully into account all the relevant optical pumping mechanisms in multilevel atomic models. We argue that `zero-field' dichroism may be of great diagnostic value in astrophysics.Comment: 10 pages, 3 figure

    Selective Absorption Processes as the Origin of Puzzling Spectral Line Polarization from the Sun

    Get PDF
    Magnetic fields play a key role in most astrophysical systems, from the Sun to active galactic nuclei. They can be studied through their effects on atomic energy levels, which produce polarized spectral lines. In particular, anisotropic radiation pumping processes (which send electrons to higher atomic levels) induce population imbalances that are modified by weak magnetic fields. Here we report peculiarly polarized light in the He I 10830-\AA multiplet observed in a coronal filament located at the centre of the solar disk. We show that the polarized light arises from selective absorption from the ground level of the triplet system of helium, and that it implies the presence of magnetic fields of the order of a few gauss that are highly inclined with respect to the solar radius vector. This disproves the common belief that population imbalances in long-lived atomic levels are insignificant in the presence of inclined fields with strengths in the gauss range, and demonstrates the operation of the ground-level Hanle effect in an astrophysical plasma.Comment: 22 pages and 4 figure

    Spintronics: Fundamentals and applications

    Get PDF
    Spintronics, or spin electronics, involves the study of active control and manipulation of spin degrees of freedom in solid-state systems. This article reviews the current status of this subject, including both recent advances and well-established results. The primary focus is on the basic physical principles underlying the generation of carrier spin polarization, spin dynamics, and spin-polarized transport in semiconductors and metals. Spin transport differs from charge transport in that spin is a nonconserved quantity in solids due to spin-orbit and hyperfine coupling. The authors discuss in detail spin decoherence mechanisms in metals and semiconductors. Various theories of spin injection and spin-polarized transport are applied to hybrid structures relevant to spin-based devices and fundamental studies of materials properties. Experimental work is reviewed with the emphasis on projected applications, in which external electric and magnetic fields and illumination by light will be used to control spin and charge dynamics to create new functionalities not feasible or ineffective with conventional electronics.Comment: invited review, 36 figures, 900+ references; minor stylistic changes from the published versio
    • 

    corecore