803 research outputs found
Transport control by coherent zonal flows in the core/edge transitional regime
3D Braginskii turbulence simulations show that the energy flux in the
core/edge transition region of a tokamak is strongly modulated - locally and on
average - by radially propagating, nearly coherent sinusoidal or solitary zonal
flows. The flows are geodesic acoustic modes (GAM), which are primarily driven
by the Stringer-Winsor term. The flow amplitude together with the average
anomalous transport sensitively depend on the GAM frequency and on the magnetic
curvature acting on the flows, which could be influenced in a real tokamak,
e.g., by shaping the plasma cross section. The local modulation of the
turbulence by the flows and the excitation of the flows are due to wave-kinetic
effects, which have been studied for the first time in a turbulence simulation.Comment: 5 pages, 5 figures, submitted to PR
Recommended from our members
Reduction of Turbulence by Zonal Flows
Three-dimensional gyrokinetic simulations of ion temperature gradient driven turbulence in magnetically confined toroidal plasmas support the view that turbulence-driven fluctuating E x B zonal flows can significantly reduce turbulent transport. Random shearing of turbulent eddies by zonal flows is analytically studied. It is shown that the fast time varying components of E x B flows, while they typically contribute significantly to the instantaneous E x B shearing rate, are less effective in suppressing turbulence. This is because the shear flow pattern changes before the eddies get distorted enough. We analytically derive the effective E x B shearing rate capturing this important physics, thereby extending the theory of E x B shear suppression of turbulence in toroidal geometry [Phys. Plasmas 2, 1648 (1995)
Status of Continuum Edge Gyrokinetic Code Physics Development *
We are developing an edge gyro-kinetic continuum simulation code to study the boundary plasma over a region extending from inside the H-mode pedestal across the separatrix to the divertor plates. A 4-D (ψ, θ, , µ) version of this code is presently being implemented, en route to a full 5-D version. A set of gyrokinetic equations[1] are discretized on computational grid which incorporates X-point divertor geometry. The present implementation is a Method of Lines approach where the phase-space derivatives are discretized with finite differences and implicit backwards differencing formulas are used to advance the system in time. A fourth order upwinding algorithm is used for particle cross-field drifts, parallel streaming, and acceleration. Boundary conditions at conducting material surfaces are implemented on the plasma side of the sheath. The Poisson-like equation is solved using GMRES with multi-grid preconditioner from HYPRE. A nonlinear Fokker-Planck collision operator from STELLA[2] in (v , v ⊥ ) has been streamlined and integrated into the gyro-kinetic package using the same implicit Newton-Krylov solver and interpolating F and dF/dt| coll to/from ( , µ) space. With our 4D code we compute the ion thermal flux, ion parallel velocity, self-consistent electric field, and geo-acoustic oscillations, which we compare with standard neoclassical theory for core plasma parameters; and we study the transition from collisional to collisionless end-loss. In the real X-point geometry, we find that the particles are trapped near outside midplane and in the X-point regions due to the magnetic configurations. The sizes of banana orbits are comparable to the pedestal width and/or the SOL width for energetic trapped particles. The effect of the real X-point geometry and edge plasma conditions on standard neoclassical theory will be evaluated, including a comparison of our 4D code with other kinetic neoclassical codes (such as NCLAS
Two-dimensional turbulence in magnetised plasmas
In an inhomogeneous magnetised plasma the transport of energy and particles
perpendicular to the magnetic field is in general mainly caused by quasi
two-dimensional turbulent fluid mixing. The physics of turbulence and structure
formation is of ubiquitous importance to every magnetically confined laboratory
plasma for experimental or industrial application. Specifically, high
temperature plasmas for fusion energy research are also dominated by the
properties of this turbulent transport. Self-organisation of turbulent vortices
to mesoscopic structures like zonal flows is related to the formation of
transport barriers that can significantly enhance the confinement of a fusion
plasma. This subject of great importance in research is rarely touched on in
introductory plasma physics or continuum dynamics courses. Here a brief
tutorial on 2D fluid and plasma turbulence is presented as an introduction to
the field, appropriate for inclusion in undergraduate and graduate courses.Comment: This is an author-created, un-copyedited version of an article
published in European Journal of Physics. IOP Publishing Ltd is not
responsible for any errors or omissions in this version of the manuscript or
any version derived from it. The definitive publisher authenticated version
is available online at doi: 10.1088/0143-0807/29/5/00
ELM triggering conditions for the integrated modeling of H-mode plasmas
Recent advances in the integrated modeling of ELMy H-mode plasmas are
presented. A model for the H-mode pedestal and for the triggering of ELMs
predicts the height, width, and shape of the H-mode pedestal and the frequency
and width of ELMs. Formation of the pedestal and the L-H transition is the
direct result of ExB flow shear suppression of anomalous transport. The
periodic ELM crashes are triggered by either the ballooning or peeling MHD
instabilities. The BALOO, DCON, and ELITE ideal MHD stability codes are used to
derive a new parametric expression for the peeling-ballooning threshold. The
new dependence for the peeling-ballooning threshold is implemented in the ASTRA
transport code. Results of integrated modeling of DIII-D like discharges are
presented and compared with experimental observations. The results from the
ideal MHD stability codes are compared with results from the resistive MHD
stability code NIMROD.Comment: 12th International Congress on Plasma Physics, 25-29 October 2004,
Nice (France
Composite Skyrme Model with Vector Mesons
We study the composite Skyrme model, proposed by Cheung and G\"{u}rsey,
introducing vector mesons in a chiral Lagrangian. We calculate the static
properties of baryons and compare with results obtained from models without
vector mesons.Comment: LaTeX, 9 pages, 3 figures, to be published in Phys. Rev.
Turbulent Transport Reduction by Zonal Flows: Massively Parallel Simulations
The dynamics of turbulence-driven E x B zonal flows has been systematically studied in fully 3-dimensional gyrokinetic simulations of microturbulence in magnetically confined toroidal plasmas using recently available massively parallel computers. Linear flow damping simulations exhibit an asymptotic residual flow in agreement with recent analytic calculations. Nonlinear global simulations of instabilities driven by temperature gradients in the ion component of the plasma provide key first principles results supporting the physics picture that turbulence-driven fluctuating E x B zonal flows can significantly reduce turbulent transport
Pathophysiology of acute experimental pancreatitis: Lessons from genetically engineered animal models and new molecular approaches
The incidence of acute pancreatitis is growing and worldwide population-based studies report a doubling or tripling since the 1970s. 25% of acute pancreatitis are severe and associated with histological changes of necrotizing pancreatitis. There is still no specific medical treatment for acute pancreatitis. The average mortality resides around 10%. In order to develop new specific medical treatment strategies for acute pancreatitis, a better understanding of the pathophysiology during the onset of acute pancreatitis is necessary. Since it is difficult to study the early acinar events in human pancreatitis, several animal models of acute pancreatitis have been developed. By this, it is hoped that clues into human pathophysiology become possible. In the last decade, while employing molecular biology techniques, a major progress has been made. The genome of the mouse was recently sequenced. Various strategies are possible to prove a causal effect of a single gene or protein, using either gain-of-function (i.e., overexpression of the protein of interest) or loss-of-function studies (i.e., genetic deletion of the gene of interest). The availability of transgenic mouse models and gene deletion studies has clearly increased our knowledge about the pathophysiology of acute pancreatitis and enables us to study and confirm in vitro findings in animal models. In addition, transgenic models with specific genetic deletion or overexpression of genes help in understanding the role of one specific protein in a cascade of inflammatory processes such as pancreatitis where different proteins interact and co-react. This review summarizes the recent progress in this field. Copyright (c) 2005 S. Karger AG, Basel
Size Scaling of Turbulent Transport in Magnetically Confined Plasmas
Transport scaling with respect to device size in magnetically confined plasmas is critically examined for electrostatic ion temperature gradient turbulence using global gyrokinetic particle simulations. It is found, by varying device size normalized by ion gyroradius while keeping other dimensionless plasma parameters fixed, that fluctuation scale length is microscopic in the presence of zonal flows. The local transport coefficient exhibits a gradual transition from a Bohm-like scaling for device sizes corresponding to present-day experiments to a gyro-Bohm scaling for future larger devices
- …