632 research outputs found

    ENERGY SUPPLEMENTATION STRATEGIES FOR WHEAT PASTURE STOCKER CATTLE UNDER UNCERTAIN FORAGE AVAILABILITY

    Get PDF
    Energy supplementation provides a means of reducing production risk of growing stocker cattle on winter wheat pasture. This study addresses the issue of risk aversion and energy supplement input use. Differences in supplementation practices induced by risk aversion and the effects of cattle and feed market conditions are examined. Results show that supplementation practices are likely to be similar across producers, irrespective of their risk attitudes. Cattle and feed market conditions, however, markedly affect supplementation practices. These findings provide information for assisting stockmen in identifying efficient supplement strategies.Risk, Wheat pasture grazing, Numerical integration, Energy supplementation, Livestock Production/Industries,

    Interference of Quantum Channels

    Full text link
    We show how interferometry can be used to characterise certain aspects of general quantum processes, in particular, the coherence of completely positive maps. We derive a measure of coherent fidelity, maximum interference visibility and the closest unitary operator to a given physical process under this measure.Comment: 4 pages, 5 figures, REVTeX 4, typographical corrections and added acknowledgemen

    A new framework for consensus for discrete-time directed networks of multi-agents with distributed delays

    Get PDF
    Copyright @ 2012 Taylor & FrancisIn this article, the distributed consensus problem is considered for discrete-time delayed networks of dynamic agents with fixed topologies, where the networks under investigation are directed and the time-delays involved are distributed time delays including a single or multiple time delay(s) as special cases. By using the invariance principle of delay difference systems, a new unified framework is established to deal with the consensus for the discrete-time delayed multi-agent system. It is shown that the addressed discrete-time network with arbitrary distributed time delays reaches consensus provided that it is strongly connected. A numerical example is presented to illustrate the proposed methods.This work was supported in part by City University of Hong Kong under Grant 7008114, the Royal Society of the UK, the National Natural Science Foundation of China under Grants 60774073 and 61074129, and the Natural Science Foundation of Jiangsu Province of China under Grant BK2010313

    Decoherence-induced geometric phase in a multilevel atomic system

    Get PDF
    We consider the STIRAP process in a three-level atom. Viewed as a closed system, no geometric phase is acquired. But in the presence of spontaneous emission and/or collisional relaxation we show numerically that a non-vanishing, purely real, geometric phase is acquired during STIRAP, whose magnitude grows with the decay rates. Rather than viewing this decoherence-induced geometric phase as a nuisance, it can be considered an example of "beneficial decoherence": the environment provides a mechanism for the generation of geometric phases which would otherwise require an extra experimental control knob.Comment: 9 pages, 12 figure

    Knowledge of Objective 'Oughts': Monotonicity and the New Miners Puzzle

    Get PDF
    In the classic Miners case, an agent subjectively ought to do what they know is objectively wrong. This case shows that the subjective and objective ‘oughts’ are somewhat independent. But there remains a powerful intuition that the guidance of objective ‘oughts’ is more authoritative—so long as we know what they tell us. We argue that this intuition must be given up in light of a monotonicity principle, which undercuts the rationale for saying that objective ‘oughts’ are an authoritative guide for agents and advisors

    A Prototype Front-End Readout Chip for Silicon Microstrip Detectors Using an Advanced SiGe Technology

    Get PDF
    The upgrade of the ATLAS detector for the high luminosity upgrade of the LHC will require a rebuild of the Inner Detector as well as replacement of the readout electronics of the Liquid Argon Calorimeter and other detector components. We proposed some time ago to study silicon germanium (SiGe) BiCMOS technologies as a possible choice for the required silicon microstrip and calorimeter front-end chips given that they showed promise to provide necessary low noise at low power. Evaluation of the radiation hardness of these technologies has been under study. To validate the expected performance of these technologies, we designed and fabricated an 8-channel front-end readout chip for a silicon microstrip detector using the IBM 8WL technology, a likely choice for the ATLAS upgrade. Preliminary electrical characteristics of this chip will be presented

    Measurement of Nuclear Transparency for the A(e,e' pi^+) Reaction

    Full text link
    We have measured the nuclear transparency of the A(e,e' pi^+) process in ^{2}H,^{12}C, ^{27}Al, ^{63}Cu and ^{197}Au targets. These measurements were performed at the Jefferson Laboratory over a four momentum transfer squared range Q^2 = 1.1 - 4.7 (GeV/c)^2. The nuclear transparency was extracted as the super-ratio of (σA/σH)(\sigma_A/\sigma_H) from data to a model of pion-electroproduction from nuclei without pi-N final state interactions. The Q^2 and atomic number dependence of the nuclear transparency both show deviations from traditional nuclear physics expectations, and are consistent with calculations that include the quantum chromodynamical phenomenon of color transparency.Comment: 5 pages, 3 figs Changes to figure 2 and 3 (error band updated and theory curves updated

    Scaling study of the pion electroproduction cross sections and the pion form factor

    Full text link
    The 1^{1}H(e,eâ€Čπ+e,e^\prime \pi^+)n cross section was measured for a range of four-momentum transfer up to Q2Q^2=3.91 GeV2^2 at values of the invariant mass, WW, above the resonance region. The Q2Q^2-dependence of the longitudinal component is consistent with the Q2Q^2-scaling prediction for hard exclusive processes. This suggests that perturbative QCD concepts are applicable at rather low values of Q2Q^2. Pion form factor results, while consistent with the Q2Q^2-scaling prediction, are inconsistent in magnitude with perturbative QCD calculations. The extraction of Generalized Parton Distributions from hard exclusive processes assumes the dominance of the longitudinal term. However, transverse contributions to the cross section are still significant at Q2Q^2=3.91 GeV2^2.Comment: 6 pages, 3 figure

    Nuclear transparency and effective kaon-nucleon cross section from the A(e, e'K+) reaction

    Full text link
    We have determined the transparency of the nuclear medium to kaons from A(e,eâ€ČK+)A(e,e^{'} K^{+}) measurements on 12^{12}C, 63^{63}Cu, and 197^{197}Au targets. The measurements were performed at the Jefferson Laboratory and span a range in four-momentum-transfer squared Q2^2=1.1 -- 3.0 GeV2^2. The nuclear transparency was defined as the ratio of measured kaon electroproduction cross sections with respect to deuterium, (σA/σD\sigma^{A}/\sigma^{D}). We further extracted the atomic number (AA) dependence of the transparency as parametrized by T=(A/2)α−1T= (A/2)^{\alpha-1} and, within a simple model assumption, the in-medium effective kaon-nucleon cross sections. The effective cross sections extracted from the electroproduction data are found to be smaller than the free cross sections determined from kaon-nucleon scattering experiments, and the parameter α\alpha was found to be significantly larger than those obtained from kaon-nucleus scattering. We have included similar comparisons between pion- and proton-nucleon effective cross sections as determined from electron scattering experiments, and pion-nucleus and proton-nucleus scattering data.Comment: 7 pages, 5 figure
    • 

    corecore