487 research outputs found
Comparing periodic-orbit theory to perturbation theory in the asymmetric infinite square well
An infinite square well with a discontinuous step is one of the simplest
systems to exhibit non-Newtonian ray-splitting periodic orbits in the
semiclassical limit. This system is analyzed using both time-independent
perturbation theory (PT) and periodic-orbit theory and the approximate formulas
for the energy eigenvalues derived from these two approaches are compared. The
periodic orbits of the system can be divided into classes according to how many
times they reflect from the potential step. Different classes of orbits
contribute to different orders of PT. The dominant term in the second-order PT
correction is due to non-Newtonian orbits that reflect from the step exactly
once. In the limit in which PT converges the periodic-orbit theory results
agree with those of PT, but outside of this limit the periodic-orbit theory
gives much more accurate results for energies above the potential step.Comment: 22 pages, 2 figures, 2 tables, submitted to Physical Review
Dynamics of quantum systems
A relation between the eigenvalues of an effective Hamilton operator and the
poles of the matrix is derived which holds for isolated as well as for
overlapping resonance states. The system may be a many-particle quantum system
with two-body forces between the constituents or it may be a quantum billiard
without any two-body forces. Avoided crossings of discrete states as well as of
resonance states are traced back to the existence of branch points in the
complex plane. Under certain conditions, these branch points appear as double
poles of the matrix. They influence the dynamics of open as well as of
closed quantum systems. The dynamics of the two-level system is studied in
detail analytically as well as numerically.Comment: 21 pages 7 figure
Changes in Floquet state structure at avoided crossings: delocalization and harmonic generation
Avoided crossings are common in the quasienergy spectra of strongly driven
nonlinear quantum wells. In this paper we examine the sinusoidally driven
particle in a square potential well to show that avoided crossings can alter
the structure of Floquet states in this system. Two types of avoided crossings
are identified: on type leads only to temporary changes (as a function of
driving field strength) in Floquet state structure while the second type can
lead to permanent delocalization of the Floquet states. Radiation spectra from
these latter states show significant increase in high harmonic generation as
the system passes through the avoided crossing.Comment: 8 pages with 10 figures submitted to Physical Review
Interaction and Localization of One-electron Orbitals in an Organic Molecule: Fictitious Parameter Analysis for Multi-physics Simulations
We present a new methodology to analyze complicated multi-physics simulations
by introducing a fictitious parameter. Using the method, we study quantum
mechanical aspects of an organic molecule in water. The simulation is
variationally constructed from the ab initio molecular orbital method and the
classical statistical mechanics with the fictitious parameter representing the
coupling strength between solute and solvent. We obtain a number of
one-electron orbital energies of the solute molecule derived from the
Hartree-Fock approximation, and eigenvalue-statistical analysis developed in
the study of nonintegrable systems is applied to them. Based on the results, we
analyze localization properties of the electronic wavefunctions under the
influence of the solvent.Comment: 4 pages, 5 figures, the revised version will appear in J. Phys. Soc.
Jpn. Vol.76 (No.1
Recommended from our members
Foil deposition alpha collector probe for TFTR`s D-T phase
A new foil deposition alpha collector sample probe has been developed for TFTR`s D-T phase. D-T fusion produced alpha particles escaping from the plasma are implanted in nickel foils located in a series of collimating ports on the detector. The nickel foils are removed from the tokamak after exposure to one or more plasma discharges and analyzed for helium content. This detector is intended to provide improved alpha particle energy resolution and pitch angle coverage over existing lost alpha detectors, and to provide an absolutely calibrated cross-check with these detectors. The ability to resolve between separate energy components of alpha particle loss is estimated to be {approx} 20%. A full 360{degree} of pitch angle coverage is provided for by 8 channels having an acceptance range of {approx} 53{degree} per channel. These detectors will be useful in characterizing classical and anomalous alpha losses and any collective alpha instabilities that may be excited during the D-T campaign of TFTR
Antimicrobial activity and brine shrimp toxicity of extracts of Terminalia brownii roots and stem
BACKGROUND: Ternimalia brownii Fresen (Combretaceae) is widely used in traditional medicine to treat bacterial, fungal and viral infections. There is a need to evaluate extracts of this plant in order to provide scientific proof for it's wide application in traditional medicine system. METHODS: Extraction of stem bark, wood and whole roots of T. brownii using solvents of increasing polarity, namely, Pet ether, dichloromethane, dichloromethane: methanol (1:1), methanol and aqua, respectively, afforded dry extracts. The extracts were tested for antifungal and antibacterial activity and for brine shrimp toxicity test. RESULTS: Extracts of the stem bark, wood and whole roots of T. brownii exhibited antibacterial activity against standard strains of Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Salmonella typhi, and Bacillus anthracis and the fungi, Candida albicans and Cryptococcus neoformans. Aqueous extracts exhibited the strongest activity against both bacteria and fungi. Extracts of the roots and stem bark exhibited relatively mild cytotoxic activity against brine shrimp larvae with LC(50 )values ranging from 113.75–4356.76 and 36.12–1458.81 μg/ml, respectively. The stem wood extracts exhibited the highest toxicity against the shrimps (LC(50 )values 2.58–14.88 μg/ml), while that of cyclophosphamide, a standard anticancer drug, was 16.33 (10.60–25.15) μg/ml. CONCLUSION: These test results support traditional medicinal use of, especially, aqueous extracts for the treatment of conditions such as diarrhea, and gonorrhea. The brine shrimp results depict the general trend among plants of the genus Terminalia, which are known to contain cytotoxic compounds such as hydrolysable tannins. These results warrant follow-up through bioassay-directed isolation of the active principles
Recommended from our members
DT results of TFTR`s alpha collector
An escaping alpha collector probe has been developed for TFTR`s DT phase to complement the results of the lost alpha scintillator detectors which have been operating on TFTR since 1988. Measurements of the energy distribution of escaping alphas have been made by measuring the range of alphas implanted into nickel foils located within the alpha collector. Exposed samples have been analyzed for 4 DT plasma discharges at plasma currents of 1.0 and 1.8 MA. The results at 1.0 MA are in good agreement with predictions for first orbit alpha loss at 3.5 MeV. The 1.8 MA results, however, indicate a large anomalous loss of partially thermalized alphas at an energy {approximately}30% below the birth energy and at a total fluence nearly an order of magnitude above expected first orbit loss. This anomalous loss is not observed with the lost alpha scintillator detectors in DT plasmas but does resemble the anomalous delayed loss seen in DD plasmas. Several potential explanations for this loss process are examined. None of the candidate explanations proposed thus far are fully consistent with the anomalous loss observations
Pathogenic variants in the paired-related homeobox 1 gene (PRRX1) cause craniosynostosis with incomplete penetrance
Purpose
Studies previously implicated PRRX1 in craniofacial development, including demonstration of murine Prrx1 expression in the pre-osteogenic cells of the cranial sutures. We investigated the role of heterozygous missense and loss-of-function variants in PRRX1 associated with craniosynostosis.
Methods
Trio-based genome, exome or targeted sequencing were used to screen PRRX1 in patients with craniosynostosis; immunofluorescence analyses were used to assess nuclear localization of wild-type and mutant proteins.
Results
Genome sequencing identified 2 of 9 sporadically affected individuals with syndromic/multisuture craniosynostosis who were heterozygous for rare/undescribed variants in PRRX1. Exome or targeted sequencing of PRRX1 revealed a further 9/1449 patients with craniosynostosis harboring deletions or rare heterozygous variants within the homeodomain. By collaboration, seven additional individuals (four families) were identified with putatively pathogenic PRRX1 variants. Immunofluorescence analyses showed that missense variants within the PRRX1 homeodomain cause abnormal nuclear localization. Of patients with variants considered likely pathogenic, bicoronal or other multi-suture synostosis was present in 11/17 (65% of the cases). Pathogenic variants were inherited from unaffected relatives in many instances, yielding a 12.5% penetrance estimate for craniosynostosis.
Conclusion
This work supports a key role for PRRX1 in cranial suture development and shows that haploinsufficiency of PRRX1 is a relatively frequent cause of craniosynostosis
- …