101,177 research outputs found
Formation of Ti–Zr–Cu–Ni bulk metallic glasses
Formation of bulk metallic glass in quaternary Ti–Zr–Cu–Ni alloys by relatively slow cooling from the melt is reported. Thick strips of metallic glass were obtained by the method of metal mold casting. The glass forming ability of the quaternary alloys exceeds that of binary or ternary alloys containing the same elements due to the complexity of the system. The best glass forming alloys such as Ti34Zr11Cu47Ni8 can be cast to at least 4-mm-thick amorphous strips. The critical cooling rate for glass formation is of the order of 250 K/s or less, at least two orders of magnitude lower than that of the best ternary alloys. The glass transition, crystallization, and melting behavior of the alloys were studied by differential scanning calorimetry. The amorphous alloys exhibit a significant undercooled liquid region between the glass transition and first crystallization event. The glass forming ability of these alloys, as determined by the critical cooling rate, exceeds what is expected based on the reduced glass transition temperature. It is also found that the glass forming ability for alloys of similar reduced glass transition temperature can differ by two orders of magnitude as defined by critical cooling rates. The origins of the difference in glass forming ability of the alloys are discussed. It is found that when large composition redistribution accompanies crystallization, glass formation is enhanced. The excellent glass forming ability of alloys such as Ti34Zr11Cu47Ni8 is a result of simultaneously minimizing the nucleation rate of the competing crystalline phases. The ternary/quaternary Laves phase (MgZn2 type) shows the greatest ease of nucleation and plays a key role in determining the optimum compositions for glass formation
Low Redshift QSO Lyman alpha Absorption Line Systems Associated with Galaxies
In this paper we present Monte-Carlo simulations of Lyman alpha absorption
systems which originate in galactic haloes, galaxy discs and dark matter (DM)
satellites around big central haloes. It is found that for strong Lyman alpha
absorption lines galactic haloes and satellites can explain ~20% and 40% of the
line number density of QSO absorption line key project respectively. If big
galaxies indeed possess such large numbers of DM satellites and they possess
gas, these satellites may play an important role for strong Lyman alpha lines.
However the predicted number density of Lyman-limit systems by satellites is
\~0.1 (per unit redshift), which is four times smaller than that by halo
clouds. Including galactic haloes, satellites and HI discs of spirals, the
predicted number density of strong lines can be as much as 60% of the HST
result. The models can also predict all of the observed Lyman-limit systems.
The average covering factor within 250 kpc/h is estimated to be ~0.36. And the
effective absorption radius of a galaxy is estimated to be ~150 kpc/h. The
models predict W_r propto rho^{-0.5} L_B^{0.15} (1+z)^{-0.5}. We study the
selection effects of selection criteria similar to the imaging and
spectroscopic surveys. We simulate mock observations through known QSO
lines-of-sight and find that selection effects can statistically tighten the
dependence of line width on projected distance. (abridged)Comment: 23 pages, 9 postscript figures; references updated, minor change in
section
Path integral for a relativistic Aharonov-Bohm-Coulomb system
The path integral for the relativistic spinless Aharonov-Bohm-Coulomb system
is solved, and the energy spectra are extracted from the resulting amplitude.Comment: 6 pages, Revte
Green's function for the Relativistic Coulomb System via Sum Over Perturbation Series
We evaluate the Green's function of the D-dimensional relativistic Coulomb
system via sum over perturbation series which is obtained by expanding the
exponential containing the potential term in the path integral
into a power series. The energy spectra and wave functions are extracted from
the resulting amplitude.Comment: 13 pages, ReVTeX, no figure
Meson and Baryon dispersion relations with Brillouin fermions
We study the dispersion relations of mesons and baryons built from Brillouin
quarks on one N_f=2 gauge ensemble provided by QCDSF. For quark masses up to
the physical strange quark mass, there is hardly any improvement over the
Wilson discretization, if either action is link-smeared and tree-level clover
improved. For quark masses in the range of the physical charm quark mass, the
Brillouin action still shows a perfect relativistic behavior, while the Wilson
action induces severe cut-off effects. As an application we determine the
masses of the \Omega_c^0, \Omega_{cc}^+ and \Omega_{ccc}^{++} baryons on that
ensemble.Comment: 16 pages, 9 figures, 4 tables; v2: one Reference added, matches
published versio
Remark on approximation in the calculation of the primordial spectrum generated during inflation
We re-examine approximations in the analytical calculation of the primordial
spectrum of cosmological perturbation produced during inflation. Taking two
inflation models (chaotic inflation and natural inflation) as examples, we
numerically verify the accuracy of these approximations.Comment: 10 pages, 6 figures, to appear in PR
Indirect exchange of magnetic impurities in zigzag graphene ribbon
We use quantum Monte Carlo method to study the indirect coupling between two
magnetic impurities on the zigzag edge of graphene ribbon, with respect to the
chemical potential . We find that the spin-spin correlation between two
adatoms located on the nearest sites in the zigzag edge are drastically
suppressed around the zero-energy. As we switch the system away from
half-filling, the antiferromagnetic correlation is first enhanced and then
decreased. If the two adatoms are adsorbed on the sites belonging to the same
sublattice, we find similar behavior of spin-spin correlation except for a
crossover from ferromagnetic to antiferromagentic correlation in the vicinity
of zero-energy. We also calculated the weight of different components of
d-electron wave function and local magnet moment for various values of
parameters, and all the results are consistent with those of spin-spin
correlation between two magnetic impurities.Comment: 3 pages, 4 figures, conference proceedin
- …