1,917 research outputs found

    High quality ultrafast transmission electron microscopy using resonant microwave cavities

    Get PDF
    Ultrashort, low-emittance electron pulses can be created at a high repetition rate by using a TM110_{110} deflection cavity to sweep a continuous beam across an aperture. These pulses can be used for time-resolved electron microscopy with atomic spatial and temporal resolution at relatively large average currents. In order to demonstrate this, a cavity has been inserted in a transmission electron microscope, and picosecond pulses have been created. No significant increase of either emittance or energy spread has been measured for these pulses. At a peak current of 814±2814\pm2 pA, the root-mean-square transverse normalized emittance of the electron pulses is εn,x=(2.7±0.1)1012\varepsilon_{n,x}=(2.7\pm0.1)\cdot 10^{-12} m rad in the direction parallel to the streak of the cavity, and εn,y=(2.5±0.1)1012\varepsilon_{n,y}=(2.5\pm0.1)\cdot 10^{-12} m rad in the perpendicular direction for pulses with a pulse length of 1.1-1.3 ps. Under the same conditions, the emittance of the continuous beam is εn,x=εn,y=(2.5±0.1)1012\varepsilon_{n,x}=\varepsilon_{n,y}=(2.5\pm0.1)\cdot 10^{-12} m rad. Furthermore, for both the pulsed and the continuous beam a full width at half maximum energy spread of 0.95±0.050.95\pm0.05 eV has been measured

    Theory and particle tracking simulations of a resonant radiofrequency deflection cavity in TM110_{110} mode for ultrafast electron microscopy

    Full text link
    We present a theoretical description of resonant radiofrequency (RF) deflecting cavities in TM110_{110} mode as dynamic optical elements for ultrafast electron microscopy. We first derive the optical transfer matrix of an ideal pillbox cavity and use a Courant-Snyder formalism to calculate the 6D phase space propagation of a Gaussian electron distribution through the cavity. We derive closed, analytic expressions for the increase in transverse emittance and energy spread of the electron distribution. We demonstrate that for the special case of a beam focused in the center of the cavity, the low emittance and low energy spread of a high quality beam can be maintained, which allows high-repetition rate, ultrafast electron microscopy with 100 fs temporal resolution combined with the atomic resolution of a high-end TEM. This is confirmed by charged particle tracking simulations using a realistic cavity geometry, including fringe fields at the cavity entrance and exit apertures

    Design and characterization of dielectric filled TM110_{110} microwave cavities for ultrafast electron microscopy

    Get PDF
    Microwave cavities oscillating in the TM110_{110} mode can be used as dynamic electron-optical elements inside an electron microscope. By filling the cavity with a dielectric material it becomes more compact and power efficient, facilitating the implementation in an electron microscope. However, the incorporation of the dielectric material makes the manufacturing process more difficult. Presented here are the steps taken to characterize the dielectric material, and to reproducibly fabricate dielectric filled cavities. Also presented are two versions with improved capabilities. The first, called a dual-mode cavity, is designed to support two modes simultaneously. The second has been optimized for low power consumption. With this optimized cavity a magnetic field strength of 2.84 ±\pm 0.07 mT was generated at an input power of 14.2 ±\pm 0.2 W. Due to the low input powers and small dimensions, these dielectric cavities are ideal as electron-optical elements for electron microscopy setups

    Feasibility of a Pulsed Ponderomotive Phase Plate for Electron Beams

    Full text link
    We propose a scheme for constructing a phase plate for use in an ultrafast Zernike-type phase contrast electron microscope, based on the interaction of the electron beam with a strongly focused, high-power femtosecond laser pulse and a pulsed electron beam. Analytical expressions for the phase shift using the time-averaged ponderomotive potential and a paraxial approximation for the focused laser beam are presented, as well as more rigorous quasiclassical simulations based on the quantum phase integral along classical, relativistic electron trajectories in an accurate, non-paraxial description of the laser beam. The results are shown to agree well unless the laser beam is focused to a waist size below a wavelength. For realistic (off-the-shelf) laser parameters the optimum phase shift of π/2-\pi/2 is shown to be achievable. When combined with RF-cavity based electron chopping and compression techniques to produce electron pulses, a femtosecond regime pulsed phase contrast microscope can be constructed. The feasibility and robustness of the scheme are further investigated using the simulations, leading to motivated choices for design parameters such as wavelength, focus size and polarization.Comment: 16 pages, 6 figure

    Dual mode microwave deflection cavities for ultrafast electron microscopy

    Get PDF
    This paper presents the experimental realization of an ultrafast electron microscope operating at a repetition rate of 75 MHz based on a single compact resonant microwave cavity operating in dual mode. This elliptical cavity supports two orthogonal TM110_{110} modes with different resonance frequencies that are driven independently. The microwave signals used to drive the two cavity modes are generated from higher harmonics of the same Ti:Sapphire laser oscillator. Therefore the modes are accurately phase-locked, resulting in periodic transverse deflection of electrons described by a Lissajous pattern. By sending the periodically deflected beam through an aperture, ultrashort electron pulses are created at a repetition rate of 75 MHz. Electron pulses with τ=(750±10)\tau=(750\pm10) fs pulse duration are created with only (2.4±0.1)(2.4\pm0.1) W of microwave input power; with normalized rms emittances of ϵn,x=(2.1±0.2)\epsilon_{n,x}=(2.1\pm0.2) pm rad and ϵn,y=(1.3±0.2)\epsilon_{n,y}=(1.3\pm0.2) pm rad for a peak current of Ip=(0.4±0.1)I_p=(0.4\pm0.1) nA. This corresponds to an rms normalized peak brightness of Bnp,rms=(7±1)×106B_{np,\textrm{rms}}=(7\pm1)\times10^6 A/m2^2 sr V, equal to previous measurements for the continuous beam. In addition, the FWHM energy spread of ΔU=(0.90±0.05)\Delta U = (0.90\pm0.05) eV is also unaffected by the dual mode cavity. This allows for ultrafast pump-probe experiments at the same spatial resolution of the original TEM in which a 75 MHz Ti:Sapphire oscillator can be used for exciting the sample. Moreover, the dual mode cavity can be used as a streak camera or time-of-flight EELS detector with a dynamic range >104>10^4

    Increasing survival gap between young and elderly gastric cancer patients

    Get PDF
    INTRODUCTION: This study investigates the treatment and survival of young versus elderly potentially curable gastric cancer patients in the Netherlands. PATIENTS AND METHODS: All noncardia gastric cancer patients with potentially curable gastric cancer according to stage (cTx-3, cNx-3, and cMx-0) diagnosed between 1989 and 2013 were selected from the Netherlands Cancer Registry. Trends in treatment and overall survival were compared between young patients (younger than 70 years) and elderly patients (70 years or older). Multivariable logistic regression analysis was used to examine the probability of patients undergoing surgery and chemotherapy in the most recent period. Multivariable Cox regression analysis was used to identify independent factors associated with survival. RESULTS: In total, 8107 young and 13,814 elderly gastric cancer patients were included. There was a major increase in the proportion of patients treated with resection and chemotherapy after 2004-2008. In young patients the increase was from 2.6% in 1999-2003 to 63% in 2009-2013 (p < 0.01). Also an increase was noticed among elderly patients, from 0.1% to 16% (p < 0.01). Median survival increased from 2004 to 2008 onward particularly in young patients and to a lesser extent in elderly patients (from 28 to 41 months vs from 11 to 13 months). Multivariable Cox regression analyses confirmed that overall survival improved for young and elderly patients. DISCUSSION: Young patients experienced a stronger improvement in survival than elderly patients, resulting in an increasing survival gap. The literature shows this is a problem not only in the Netherlands but also throughout Europe. The dissimilarity in treatment between young and elderly patients could be the reason for this difference

    Clinical and Physiological Correlates of Irritability in Depression: Results from the Netherlands Study of Depression and Anxiety

    Get PDF
    Objective. Irritable and nonirritable depressed patients differ on demographic and clinical characteristics. We investigated whether this extends to psychological and physiological measures. Method. We compared irritable and nonirritable unipolar depressed patients on symptomatology, personality, and (psycho)physiological measures (cortisol, cholesterol, and heart rate variability). Symptomatology was reassessed after one year, and we also compared depressed patients who were irritable or non-irritable at both time points (Irr++ versus Irr−−). Results. Almost half (46%; N = 420) of the sample was classified as irritable. These patients scored higher on depression severity, anxiety, hypomanic symptoms, and psychological variables. No differences were observed on physiological markers after correction for depression severity. The same pattern was found when comparing Irr++ and Irr−− groups. Conclusion. Irritable and non-irritable depressed patients differ on clinical and psychological variables, but not on the currently investigated physiological markers. The clinical relevance of the distinction and the significance of the hypomanic symptoms remain to be demonstrated

    Construction of Special Solutions for Nonintegrable Systems

    Full text link
    The Painleve test is very useful to construct not only the Laurent series solutions of systems of nonlinear ordinary differential equations but also the elliptic and trigonometric ones. The standard methods for constructing the elliptic solutions consist of two independent steps: transformation of a nonlinear polynomial differential equation into a nonlinear algebraic system and a search for solutions of the obtained system. It has been demonstrated by the example of the generalized Henon-Heiles system that the use of the Laurent series solutions of the initial differential equation assists to solve the obtained algebraic system. This procedure has been automatized and generalized on some type of multivalued solutions. To find solutions of the initial differential equation in the form of the Laurent or Puiseux series we use the Painleve test. This test can also assist to solve the inverse problem: to find the form of a polynomial potential, which corresponds to the required type of solutions. We consider the five-dimensional gravitational model with a scalar field to demonstrate this.Comment: LaTeX, 14 pages, the paper has been published in the Journal of Nonlinear Mathematical Physics (http://www.sm.luth.se/math/JNMP/
    corecore