36 research outputs found

    High-energy threshold reaction rates on 0.8 GeV proton-irradiated thick Pb-target

    Full text link
    This works presents results of activation-aided determination of threshold reaction rates in 92 209Bi, natPb, 197Au, 181Ta, 169Tm, natIn, 93Nb, 64Zn, 65Cu, 63Cu, 59Co, 19F, and 12C samples and in 121 27Al samples. All the samples were aligned with the proton beam axis inside and outside the demountable 92-cm thick Pb target of 15-cm diameter assembled of 23 4-cm thick discs. The samples were placed on 12 target disks to reproduce the long axis distribution of protons and neutrons. In June 2006, the target was exposed for 18 hours to a 800-MeV proton beam extracted from the ITEP U-10 accelerator. The proton fluence and the proton beam shape were determined using the 27Al(p,x)7Be monitor reaction. The reaction rates were determined by the direct gamma-spectrometry techniques. In total, 1196 gamma-spectra have been measured, and about 1500 reaction rates determined. The measured reaction rates were simulated by the MCNPX code using the following databases: ENDF/B6 for neutrons below 20 MeV, MENDL2 for 20-100 MeV neutrons, and MENDL2P for proton cross sections up to 200 MeV. An acceptable agreement of simulations with experimental data has been found.Comment: 4 pages, 5 figures, 3 tables, only pdf file, to be published in Proc. Int. Conf. on Nucl. Data for Sci. and Technology (ND2007), Nice, France, April 22-27, 200

    Successful Implementation of the ABCDEF Bundle in the MICU through Interprofessional Collaboration and Teamwork

    Get PDF
    Earlier this year, members of the medical intensive care unit (MICU) attended an interprofessional workshop that utilized Awakening/Breathing/Choice of Sedation/Delirium/Early Mobility (ABCDE) bundle simulation combined with TeamSTEPPS training to empower care givers to advocate for patient safety while optimizing patient care. The ABCDE bundle is an evidence-based tool designed to implement pain, agitation, and delirium guideline recommendations into routine practice. To further improve patient safety and outcomes and build upon the ABCDE concept, the MICU team developed an interprofession-al practice project by adding routine assessment of need for indwelling Foley catheters to their daily work list, creating the “ABCDEF” bundle

    Residual nuclide formation in 206,207,208,nat-Pb and 209-Bi induced by 0.04-2.6 GeV Protons as well as in 56-Fe induced by 0.3-2.6 GeV Protons

    Full text link
    5972 independent and cumulative yields of radioactive residuals nuclei have been measured in 55 thin 206,207,208,nat-Pb and 209-Bi targets irradiated by 0.04, 0.07, 0.10, 0.15, 0.25, 0.6, 0.8, 1.2, 1.4, 1.6, and 2.6 GeV protons. Besides, 219 yields have been measured in 0.3, 0.5, 0.75, 1.0, 1.5, and 2.6 GeV proton-irradiated 56-Fe target. The protons were extracted from the ITEP U-10 synchrotron. The measured data are compared with experimental results obtained elsewhere and with theoretical calculations by LAHET, MCNPX, CEM03, LAQGSM03, CASCADE, CASCADO, and LAHETO codes. The predictive power was found to be different for each of the codes tested, but was satisfactory on the whole in the case of spallation products. At the same time, none of the codes can de-scribe well the product yields throughout the whole product mass range, and all codes must be further improved.Comment: 4 pages, 4 figures, 2 tables, only pdf file, to be published in Proc. Int. Conf. on Nucl. Data for Sci. and Technology (ND2007), Nice, France, April 22-27, 20

    Collective dynamics of liquid aluminum probed by Inelastic X-ray Scattering

    Full text link
    An inelastic X-ray scattering experiment has been performed in liquid aluminum with the purpose of studying the collective excitations at wavevectors below the first sharp diffraction peak. The high instrumental resolution (up to 1.5 meV) allows an accurate investigation of the dynamical processes in this liquid metal on the basis of a generalized hydrodynamics framework. The outcoming results confirm the presence of a viscosity relaxation scenario ruled by a two timescale mechanism, as recently found in liquid lithium.Comment: 8 pages, 7 figure

    Density fluctuations and single-particle dynamics in liquid lithium

    Full text link
    The single-particle and collective dynamical properties of liquid lithium have been evaluated at several thermodynamic states near the triple point. This is performed within the framework of mode-coupling theory, using a self-consistent scheme which, starting from the known static structure of the liquid, allows the theoretical calculation of several dynamical properties. Special attention is devoted to several aspects of the single-particle dynamics, which are discussed as a function of the thermodynamic state. The results are compared with those of Molecular Dynamics simulations and other theoretical approaches.Comment: 31 pages (in preprint format), 14 figures. Submitted to Phys. Rev.

    COAUTHOR - a MoU to create a COnsortium of Academics from Universities promoting the use of THORium

    Get PDF
    This paper describes the Memorandum of Understanding (MoU) signed by the authors to create a future consortium of academics from universities to promote the utilization of thorium (COAUTHOR). Besides the description of the MoU, also results of the research conducted in each participating partner or collaborative work performed among them will be described. Finally, the future work planned in the framework of the MoU, will be discussed

    A MoU to create a COnsortium of Academics from Universities promoting the use of THORrium (COAUTHOR)

    Get PDF
    Nuclear Energy, primarily to produce electricity and other use, and the enveloping Nuclear Technology, as inherited from the XX Century, constitutes a controversial issue for political and economic reasons. On the one hand, the energy source is promoted in several Countries and an unavoidable mean to ensure growth for the human civilization ad suitable living standard with reduced or no impact upon the environment, on the other hand it is abandoned or going to be abandoned in other Countries which did benefit of stable economic growth. Thorium is an emblem for such a situation: huge reserves are available all over the world (primarily India, Turkey, and Brazil, but not only) and its technological worth for exploitation in current generation of thermal fission reactors is demonstrated, on the other hand no industrial use is ongoing or planned for the near future (with an exception constituted by situation in India). Moreover, research on thorium utilization in nuclear reactors and associated fuel cycles has been of academic interest for many researchers around the world. These researches are being conducted to increase the natural resource utilization, reduces the radiotoxicity, and other criteria of sustainability, by using thorium in the present time advanced reactors (Generation III), as well for the future Generation IV, mainly in Molten Salt Reactors (MSR) and in hybrid fusion/ accelerators driven system. Here we are going to describe a MoU signed by the authors to promote the utilization of thorium as nuclear fuel, and shortly describe the research activities conducted by the MoU partners

    Cross-sections for nuclide production in 56Fe target irradiated by 300, 500,750, 1000, 1500, and 2600 MeV protons compared with data on hydrogen target irradiation by 300, 500, 750, 1000, and 1500 MeV/nucleon 56Fe ions

    Full text link
    Cross-sections for radioactive nuclide production in 56Fe(p,x) reactions at 300, 500, 750, 1000, 1500, and 2600 MeV were measured using the ITEP U-10 proton accelerator. In total, 221 independent and cumulative yields of products of half-lives from 6.6 min to 312 days have been obtained via the direct-spectrometry method. The measured data have been compared with the experimental data obtained elsewhere by the direct and inverse kinematics methods and with calculations by 15 codes, namely: MCNPX (INCL, CEM2k, BERTINI, ISABEL), LAHET (BERTINI, ISABEL), CEM03 (.01, .G1, .S1), LAQGSM03 (.01, .G1, >.S1), CASCADE-2004, LAHETO, and BRIEFF. Most of our data are in a good agreement with the inverse kinematics results and disprove the results of some earlier activation measurements that were quite different from the inverse kinematics measurements. The most significant calculation-to-experiment differences are observed in the yields of the A<30 light nuclei, indicating that further improvements in nuclear reaction models are needed, and pointing out as well to a necessity of more complete measurements of such reactions.Comment: 53 pages, 9 figures, 6 tables, only pdf file, submitted to Phys. Rev.

    Verification of high-energy transport codes on the basis of activation data

    Get PDF
    Nuclide production cross sections measured at ITEP for the targets of nat-Cr, 56-Fe, nat-Ni, 93-Nb, 181-Ta, nat-W, nat-Pb, 209-Bi irradiated by protons with energies from 40 to 2600 MeV were used to estimate the predictive accuracy of several popular high-energy transport codes. A general agreement of the ITEP data with the data obtained by other groups, including the numerous GSI data measured by the inverse kinematics method was found. Simulations of the measured data were performed with the MCNPX (Bertini and ISABEL options), CEM03.02, INCL4.2+ABLA, INCL4.5+ABLA07, PHITS, and CASCADE.07 codes. Deviation factors between the calculated and experimental cross sections have been estimated for each target and for the whole energy range covered by our measurements. Two-dimensional diagrams of deviation factor values were produced for estimating the predictive power of every code for intermediate, not measured masses of nuclei-targets and bombarding energies of protons. Further improvements of all tested here codes are recommended. In addition, new measurements at ITEP of nuclide yields from a 208-Pb target irradiated by 500 MeV protons are presented. A good agreement between these new data and the GSI measurements obtained by the inverse kinematics method was foundComment: 31 pages, 18 figures, 6 tables, only pdf, LANL Report LA-UR-11-02704, Los Alamos (2011), submitted to Phys. Rev.
    corecore