874 research outputs found
Proteomics of Brucella: Technologies and Their Applications for Basic Research and Medical Microbiology
Brucellosis is a global zoonosis caused by Gram-negative, facultative intracellular bacteria of the genus Brucella (B.). Proteomics has been used to investigate a few B. melitensis and B. abortus strains, but data for other species and biovars are limited. Hence, a comprehensive analysis of proteomes will significantly contribute to understanding the enigmatic biology of brucellae. For direct identification and typing of Brucella, matrix-assisted laser desorption ionization—time of flight mass spectrometry (MALDI—TOF MS) has become a reliable tool for routine diagnosis due to its ease of handling, price and sensitivity highlighting the potential of proteome-based techniques. Proteome analysis will also help to overcome the historic but still notorious Brucella obstacles of infection medicine, the lack of safe and protective vaccines and sensitive serologic diagnostic tools by identifying the most efficient protein antigens. This perspective summarizes past and recent developments in Brucella proteomics with a focus on species identification and serodiagnosis. Future applications of proteomics in these fields are discussed
Energy and angular momentum of general 4-dimensional stationary axi-symmetric spacetime in teleparallel geometry
We derive an exact general axi-symmetric solution of the coupled
gravitational and electromagnetic fields in the tetrad theory of gravitation.
The solution is characterized by four parameters (mass), (charge),
(rotation) and (NUT). We then, calculate the total exterior energy using
the energy-momentum complex given by M{\o}ller in the framework of
Weitzenbck geometry. We show that the energy contained in a sphere is
shared by its interior as well as exterior. We also calculate the components of
the spatial momentum to evaluate the angular momentum distribution. We show
that the only non-vanishing components of the angular momentum is in the Z
direction.Comment: Latex. Will appear in IJMP
Teleparallel Versions of Friedmann and Lewis-Papapetrou Spacetimes
This paper is devoted to investigate the teleparallel versions of the
Friedmann models as well as the Lewis-Papapetrou solution. We obtain the tetrad
and the torsion fields for both the spacetimes. It is shown that the
axial-vector vanishes for the Friedmann models. We discuss the different
possibilities of the axial-vector depending on the arbitrary functions
and in the Lewis-Papapetrou metric. The vector related with spin has
also been evaluated.Comment: 13 pages, accepted for publication in GR
Kerr-Newman Solution and Energy in Teleparallel Equivalent of Einstein Theory
An exact charged axially symmetric solution of the coupled gravitational and
electromagnetic fields in the teleparallel equivalent of Einstein theory is
derived. It is characterized by three parameters ``the gravitational mass
, the charge parameter and the rotation parameter " and its
associated metric gives Kerr-Newman spacetime. The parallel vector field and
the electromagnetic vector potential are axially symmetric. We then, calculate
the total energy using the gravitational energy-momentum. The energy is found
to be shared by its interior as well as exterior. Switching off the charge
parameter we find that no energy is shared by the exterior of the Kerr-Newman
black hole.Comment: 11 pages, Latex. Will appear in Mod. Phys. Lett.
Melamine-Ceramic Membrane for Oily Wastewater Treatment
Four distinctive Ceramic membranes have been synthesized using bentonite and Egyptian clay with the expansion of melamine. The addition of melamine (~ 1% by wt.) enhanced the porosity, density, the thermal stability and water permeability of the membranes made from bentonite or Egyptian clay while decreasing the chemical stability of either bentonite or Egyptian clay membranes. The most noteworthy level of decrease in COD (94.7%) is acquired for the concentration of 200ppm with saturating flux of 4.63 E-05 (m3/m2.s) utilizing (B+M) membrane. The cost of the four manufactured clay membranes was assessed based on raw materials used in the present investigation
The Wyner Variational Autoencoder for Unsupervised Multi-Layer Wireless Fingerprinting
Wireless fingerprinting refers to a device identification method leveraging
hardware imperfections and wireless channel variations as signatures. Beyond
physical layer characteristics, recent studies demonstrated that user
behaviours could be identified through network traffic, e.g., packet length,
without decryption of the payload. Inspired by these results, we propose a
multi-layer fingerprinting framework that jointly considers the multi-layer
signatures for improved identification performance. In contrast to previous
works, by leveraging the recent multi-view machine learning paradigm, i.e.,
data with multiple forms, our method can cluster the device information shared
among the multi-layer features without supervision. Our information-theoretic
approach can be extended to supervised and semi-supervised settings with
straightforward derivations. In solving the formulated problem, we obtain a
tight surrogate bound using variational inference for efficient optimization.
In extracting the shared device information, we develop an algorithm based on
the Wyner common information method, enjoying reduced computation complexity as
compared to existing approaches. The algorithm can be applied to data
distributions belonging to the exponential family class. Empirically, we
evaluate the algorithm in a synthetic dataset with real-world video traffic and
simulated physical layer characteristics. Our empirical results show that the
proposed method outperforms the state-of-the-art baselines in both supervised
and unsupervised settings
A New Chaotic System with Line of Equilibria: Dynamics, Passive Control and Circuit Design
A new chaotic system with line equilibrium is introduced in this paper. This system consists of five terms with two transcendental nonlinearities and two quadratic nonlinearities. Various tools of dynamical system such as phase portraits, Lyapunov exponents, Kaplan-Yorke dimension, bifurcation diagram and Poincarè map are used. It is interesting that this system has a line of fixed points and can display chaotic attractors. Next, this paper discusses control using passive control method. One example is given to insure the theoretical analysis. Finally, for the new chaotic system, An electronic circuit for realizing the chaotic system has been implemented. The numerical simulation by using MATLAB 2010 and implementation of circuit simulations by using MultiSIM 10.0 have been performed in this study
Towards Wind Energy-based Charging Stations: A Review of Optimization Methods
Due to the growing importance of renewable sources in sustainable energy systems, the strategic deployment of robust optimization techniques plays a crucial role in the design of Electric Vehicle Charging Stations (EVCSs). These stations need to smoothly incorporate renewable sources, ensuring optimal energy utilization. This study provides a comprehensive overview of the methodologies and approaches employed in the enhancement of wind energy based EVCSs. The aim is to discern the most efficacious techniques for optimizing charging stations. Researchers engage diverse strategies and methodologies in the realm of sizing and optimization, encompassing a spectrum of algorithmic implementations and software solutions. Evidently, each algorithm or software application bears distinctive merits and demerits. Singular reliance on a solitary algorithm or software for charging utility optimization is discerned to be potentially limiting. The investigation reveals that achieving better results in Electric Vehicle Charging Station (EVCS) optimization is facilitated by the collaborative use of multiple algorithms like GA, PSO, and ACO, among others, or software tools like Homer or RETScreen
Cosmological applications in Kaluza-Klein theory
The field equations of Kaluza-Klein (KK) theory have been applied in the
domain of cosmology. These equations are solved for a flat universe by taking
the gravitational and the cosmological constants as a function of time t. We
use Taylor's expansion of cosmological function, , up to the first
order of the time . The cosmological parameters are calculated and some
cosmological problems are discussed.Comment: 14 pages Latex, 5 figures, one table. arXiv admin note: text overlap
with arXiv:gr-qc/9805018 and arXiv:astro-ph/980526
- …