4,838 research outputs found
In-flight determination of spacecraft magnetic bias independent of attitude
A simple algorithm for the in-flight determination of the magnetic bias of a spacecraft is presented. The algorithm, developed for use during the Hubble Space Telescope mission, determines this bias independently of any attitude estimates and requires no spacecraft sensor data other than that from the spacecraft magnetometer(s). Estimates of the algorithm's accuracy and results from a number of numerical studies on the use of this algorithm are also presented
Phase separation and electron pairing in repulsive Hubbard clusters
Exact thermal studies of small (4-site, 5-site and 8-site)
Hubbard clusters with local electron repulsion yield intriguing insight into
phase separation, charge-spin separation, pseudogaps, condensation, in
particular, pairing fluctuations away from half filling (near optimal doping).
These exact calculations, carried out in canonical (i.e. for fixed electron
number N) and grand canonical (i.e. fixed chemical potential ) ensembles,
monitoring variations in temperature T and magnetic field h, show rich phase
diagrams in a T- space consisting of pairing fluctuations and signatures
of condensation. These electron pairing instabilities are seen when the onsite
Coulomb interaction U is smaller than a critical value U(T) and they point
to a possible electron pairing mechanism. The specific heat, magnetization,
charge pairing and spin pairing provide strong support for the existence of
competing (paired and unpaired) phases near optimal doping in these clusters as
observed in recent experiments in doped LaSrCuO high T
superconductors.Comment: 5 pages, 5 figure
The Early Days of Research on Carbonic Anhydrase
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73862/1/j.1749-6632.1984.tb12310.x.pd
Noise resistance of adiabatic quantum computation using random matrix theory
Besides the traditional circuit-based model of quantum computation, several
quantum algorithms based on a continuous-time Hamiltonian evolution have
recently been introduced, including for instance continuous-time quantum walk
algorithms as well as adiabatic quantum algorithms. Unfortunately, very little
is known today on the behavior of these Hamiltonian algorithms in the presence
of noise. Here, we perform a fully analytical study of the resistance to noise
of these algorithms using perturbation theory combined with a theoretical noise
model based on random matrices drawn from the Gaussian Orthogonal Ensemble,
whose elements vary in time and form a stationary random process.Comment: 9 pages, 3 figure
A Factorization Algorithm for G-Algebras and Applications
It has been recently discovered by Bell, Heinle and Levandovskyy that a large
class of algebras, including the ubiquitous -algebras, are finite
factorization domains (FFD for short).
Utilizing this result, we contribute an algorithm to find all distinct
factorizations of a given element , where is
any -algebra, with minor assumptions on the underlying field.
Moreover, the property of being an FFD, in combination with the factorization
algorithm, enables us to propose an analogous description of the factorized
Gr\"obner basis algorithm for -algebras. This algorithm is useful for
various applications, e.g. in analysis of solution spaces of systems of linear
partial functional equations with polynomial coefficients, coming from
. Additionally, it is possible to include inequality constraints
for ideals in the input
Thermal noise limitations to force measurements with torsion pendulums: Applications to the measurement of the Casimir force and its thermal correction
A general analysis of thermal noise in torsion pendulums is presented. The
specific case where the torsion angle is kept fixed by electronic feedback is
analyzed. This analysis is applied to a recent experiment that employed a
torsion pendulum to measure the Casimir force. The ultimate limit to the
distance at which the Casimir force can be measured to high accuracy is
discussed, and in particular the prospects for measuring the thermal correction
are elaborated upon.Comment: one figure, five pages, to be submitted to Phys Rev
- …