98 research outputs found

    Succinic semialdehyde dehydrogenase deficiency: Lessons from mice and men

    Get PDF
    Succinic semialdehyde dehydrogenase (SSADH) deficiency, a disorder of GABA degradation with subsequent elevations in brain GABA and GHB, is a neurometabolic disorder with intellectual disability, epilepsy, hypotonia, ataxia, sleep disorders, and psychiatric disturbances. Neuroimaging reveals increased T2-weighted MRI signal usually affecting the globus pallidus, cerebellar dentate nucleus, and subthalamic nucleus, and often cerebral and cerebellar atrophy. EEG abnormalities are usually generalized spike-wave, consistent with a predilection for generalized epilepsy. The murine phenotype is characterized by failure-to-thrive, progressive ataxia, and a transition from generalized absence to tonic-clonic to ultimately fatal convulsive status epilepticus. Binding and electrophysiological studies demonstrate use-dependent downregulation of GABA(A) and (B) receptors in the mutant mouse. Translational human studies similarly reveal downregulation of GABAergic activity in patients, utilizing flumazenil-PET and transcranial magnetic stimulation for GABA(A) and (B) activity, respectively. Sleep studies reveal decreased stage REM with prolonged REM latencies and diminished percentage of stage REM. An ad libitum ketogenic diet was reported as effective in the mouse model, with unclear applicability to the human condition. Acute application of SGS–742, a GABA(B) antagonist, leads to improvement in epileptiform activity on electrocorticography. Promising mouse data using compounds available for clinical use, including taurine and SGS–742, form the framework for human trials

    Repeated administration of the GABAB receptor positive modulator BHF177 decreased nicotine self-administration, and acute administration decreased cue-induced reinstatement of nicotine seeking in rats

    Get PDF
    Abstract: Rationale γ\gamma-Aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the brain and is implicated in the modulation of central reward processes. Acute or chronic administration of GABAB_B receptor agonists or positive modulators decreased self-administration of various drugs of abuse. Furthermore, GABAB_B receptor agonists inhibited cue-induced reinstatement of nicotine- and cocaine-seeking behavior. Because of their fewer adverse side effects compared with GABAB_B receptor agonists, GABAB_B receptor positive modulators are potentially improved therapeutic compounds for the treatment of drug dependence compared with agonists. Objectives and methods: We examined whether the acute effects of the GABAB_B receptor positive modulator N-[(1R,2R,4S)-bicyclo[2.2.1]hept-2-yl]-2-methyl-5-[4-(trifluoromethyl)phenyl]-4-pyrimidinamine (BHF177) on nicotine self- administration and food-maintained responding under a fixed-ratio 5 schedule of reinforcement were maintained after repeated administration. The effects of acute BHF177 administration on cue-induced nicotine- and food-seeking behavior, a putative animal model of relapse, were also examined. Results: Repeated administration of BHF177 for 14 days decreased nicotine self-administration, with small tolerance observed during the last 7 days of treatment, whereas BHF177 minimally affected food-maintained responding. Acute BHF177 administration dose-dependently blocked cue-induced reinstatement of nicotine-, but not food-, seeking behavior after a 10-day extinction period. Conclusions: These results showed that BHF177 selectively blocked nicotine self-administration and prevented cueinduced reinstatement of nicotine seeking, with minimal effects on responding for food and no effect on cue-induced reinstatement of food seeking. Thus, GABAB_B receptor positive modulators could be useful therapeutics for the treatment of different aspects of nicotine dependence by facilitating smoking cessation by decreasing nicotine intake and preventing relapse to smoking in humans

    The modular systems biology approach to investigate the control of apoptosis in Alzheimer's disease neurodegeneration

    Get PDF
    Apoptosis is a programmed cell death that plays a critical role during the development of the nervous system and in many chronic neurodegenerative diseases, including Alzheimer's disease (AD). This pathology, characterized by a progressive degeneration of cholinergic function resulting in a remarkable cognitive decline, is the most common form of dementia with high social and economic impact. Current therapies of AD are only symptomatic, therefore the need to elucidate the mechanisms underlying the onset and progression of the disease is surely needed in order to develop effective pharmacological therapies. Because of its pivotal role in neuronal cell death, apoptosis has been considered one of the most appealing therapeutic targets, however, due to the complexity of the molecular mechanisms involving the various triggering events and the many signaling cascades leading to cell death, a comprehensive understanding of this process is still lacking. Modular systems biology is a very effective strategy in organizing information about complex biological processes and deriving modular and mathematical models that greatly simplify the identification of key steps of a given process. This review aims at describing the main steps underlying the strategy of modular systems biology and briefly summarizes how this approach has been successfully applied for cell cycle studies. Moreover, after giving an overview of the many molecular mechanisms underlying apoptosis in AD, we present both a modular and a molecular model of neuronal apoptosis that suggest new insights on neuroprotection for this disease

    Comparative potencies of CGP 47654A and CGP 46165A as GABA (B) receptor antagonists in rat brain

    No full text
    In rat neocortical slices maintained in Mg2+-free Krebs medium, the gamma-aminobutyric acid (GABAB) receptor agonist baclofen concentration-dependently depressed the frequency of spontaneous discharges (EC50 = 6.1 microM). This was reversibly antagonised by 3-aminopropyl-(1,1-difluoro-n-butyl)-phosphinic acid (25, 100, 500 microM) (CGP 47654A) and 3-aminopropyl-P-(alpha-hydroxybenzyl)-phosphinic acid (CGP 46165A) (50, 100, 400 microM) which produced rightwards shifts of the baclofen concentration-response curves, with respective pA2 values of 4.9+/-0.2 and 4.6+/-0.15. Although relatively potent on GABAB heteroreceptors studied here, CGP 47654A and CGP 46165A were 5 and 50 times weaker, respectively, as GABAB autoreceptor antagonists [Froestl, W., Mickel, S.J., Von Sprecher, G., Diel, P.J., Hall, R.G., Maier, L., Strub, D., Melillo, V., Baumann, P.A., Bernasconi, R., Gentsch, C., Hauser, K., Jaekel, J., Karlsson, G., Klebs, K., Maitre, L., Marescaux, C., Pozza, M.F., Schmutz, M., Steinmann, M.W., Van Riezen, H., Vassout, A., Mondadori, C., Olpe, H.R., Waldmeier, P.C., Bittiger, H., 1995. Phosphinic acid analogues of GABA. 2. Selective, orally active GABAB antagonists. J. Med. Chem. 38: 3313-3331.], representing potentially useful ligands for differentiating GABA hetero- and autoreceptors

    Pharmacological re-evaluation of a GABAB receptor antagonist CGP 47332A in rat brain

    No full text
    In rat neocortical slices maintained in Mg(2+)-free Krebs medium, the gamma-aminobutyric acid (GABA(B)) receptor agonist baclofen concentration-dependently depressed the frequency of spontaneous discharges (EC(50)=12 microM). This was reversibly antagonised by (R, S)-3-amino-2-hydroxy-propyl-P-n-butyl-phosphinic acid (CGP 47332A) (25, 100, 300 microM) which produced rightwards shifts of the baclofen concentration-response curves (pA(2) value=4.8+/-0.1). In electrically stimulated slices preloaded with [3H]GABA, CGP 47332A increased its release (EC(150)=100 microM) through antagonism of GABA(B) autoreceptors. Although CGP 47332A was some six times weaker on GABA(B) auto- than on heteroreceptors, yet its congener lacking the beta-hydroxy substituent displays equal potency in both binding (IC(50)=38 microM) and GABA(B) autoreceptor functional studies (EC(150)=38 microM) as previously reported [Froestl, W., Mickel, S.J. , Von Sprecher, G., Diel, P.J., Hall, R.G., Maier, L., Strub, D., Melillo, V., Baumann, P.A., Bernasconi, R., Gentsch, C., Hauser, K., Jaekel, J., Karlsson, G., Klebs, K., Maitre, L., Marescaux, C., Pozza, M.F., Schmutz, M., Steinmann, M.W., Van Riezen, H., Vassout, A., Mondadori, C., Olpe, H.R., Waldmeier, P.C., Bittiger, H., Phosphinic acid analogues of GABA: 2. Selective, orally active GABA(B) antagonists. J. Med. Chem. 38 (1995) 3313-3331.]

    Comparative activities of the enantiomeric GABAB receptor agonists CGP 44532 and 44533 in central and peripheral tissues

    No full text
    Copyright © 2001 Published by Elsevier Science B.V. All rights reserved.In neocortical slices maintained in Mg(2+)-free Krebs medium, the gamma-aminobutyric acid (GABA(B)) receptor agonists baclofen, (3-amino-2(S)-hydroxypropyl)methylphosphinic acid (CGP 44532), and its (R)-enantiomer CGP 44533 depressed the frequency of spontaneous discharges in a concentration-dependent manner (EC(50)=10, 6.5, and 50 microM, respectively). These effects were reversibly antagonised by the GABA(B) receptor antagonist (+)-(S)-5,5 dimethylmorpholinyl-2-acetic acid (Sch 50911) (3, 10, and 30 microM) (average pA(2) value=6.0+/-0.2). In neocortical wedges, baclofen, CGP 44532 and CGP 44533 elicited concentration-dependent hyperpolarisations (the EC(50)s were 14, 7.5 and 16 microM, respectively) sensitive to Sch 50911 (1, 5, 10 microM) (average pA(2) value=6.0+/-0.1), whilst they also depressed ileal electrically elicited cholinergic twitch contractions (EC(50)=11, 7, and 50 microM) that were antagonised by Sch 50911 (average pA(2) value=6.0+/-0.1). In electrically stimulated brain slices preloaded with [3H]GABA, baclofen, CGP 44532 and CGP 44533 decreased [3H]GABA release (IC(50)=5, 0.45, and 10 microM); this effect was reversed by Sch 50911 (50 microM). It is concluded that CGP 44532 is a far more potent agonist at GABA(B) autoreceptors than at central or peripheral heteroreceptors.Jennifer Ong, Sotiria Bexis, Victor Marino, David A. S. Parker, David I. B. Kerr and Wolfgang Froestlhttp://www.elsevier.com/wps/find/journaldescription.cws_home/506087/description#descriptio

    CGP 36216 is a selective antagonist at GABAB presynaptic receptors in rat brain

    No full text
    Copyright © 2001 Elsevier Science B.V. All rights reserved.In rat neocortical preparations maintained in Mg(2+)-free Krebs medium, baclofen depressed the frequency of spontaneous discharges in a concentration-dependent manner (EC(50) = 6 microM), sensitive to (3-aminopropyl)ethylphosphinic acid (CGP 36216) (100, 300 and 500 microM) (pA(2) = 3.9 +/- 0.1). By contrast, CGP 36216, up to 1 mM, was ineffective in antagonising baclofen-induced hyperpolarisations, mediated through gamma-aminobutyric acid(B) (GABA(B)) postsynaptic receptors. In electrically stimulated brain slices preloaded with [3H]GABA, CGP 36216 increased [3H]GABA release (IC(50) = 43 microM), which was reversed by baclofen (20 microM). While CGP 36216 is ineffective at GABA(B) postsynaptic receptors, it is appreciably more active at presynaptic receptors.Jennifer Ong, Sotiria Bexis, Victor Marino, David A. S. Parker, David I. B. Kerr and Wolfgang Froestlhttp://www.elsevier.com/wps/find/journaldescription.cws_home/506087/description#descriptio

    The development of medication for alcohol-use disorders targeting the GABAB receptor system

    No full text
    The present paper summarizes experimental and clinical data suggesting the therapeutic potential of the prototypic GABAB receptor agonist, baclofen, for the treatment of alcohol-use disorders (AUDs). Numerous studies have reported baclofen-induced suppression of alcohol drinking, relapse-like drinking, and alcohol reinforcing, rewarding, stimulating, and motivational properties in rats and mice. The majority of clinical surveys conducted to date have demonstrated the capacity of baclofen to suppress alcohol consumption, craving for alcohol, and alcohol withdrawal symptomatology in alcohol-dependent patients. More recently, the discovery of a positive allosteric modulatory binding site, together with the synthesis of in vivo effective ligands, provided a new tool for pharmacological manipulations of the GABAB receptor. Accumulating lines of preclinical evidence suggest that positive allosteric modulators of the GABAB receptor (GABAB PAMs), such as GS39783, display a high therapeutic index and retain baclofen’s capacity to suppress alcohol consumption and alcohol reinforcing and motivational properties. The present paper also summarizes the most relevant patents on GABAB receptor agonists and GABAB PAMs as possible pharmacotherapies for AUDs
    • …
    corecore