137 research outputs found

    Wetting and Growth Behaviors in Adsorbed Systems with Long-Range Forces

    Get PDF
    The growth and possible wetting behaviors of an adsorbed film are studied employing a solid-on-solid model in the presence of a hard wall and external potential V(h) which is of long range. The model is analyzed with the use of position-space renormalization-group methods within the Migdal approximation. The existence of wetting transitions and their nature depends on the asymptotic behavior of V(h) at large distances. We find that critical wetting cannot take place in this model. From what is known of V(h), we conclude that wetting can be observed only along the gas-liquid phase boundary; however, first-order transitions between thin and thick films, which may be experimentally difficult to distinguish from wetting, can be observed along any phase boundary. The nature of the global phase diagram depends on the form of V(h) and several general behaviors are presented. In particular, in the layering subregime we find that the limit of layering critical points is indeed the bulk roughening temperature as had been suggested by de Oliveira and Griffiths. The scaling of these layering critical points is given explicitly

    Universal Long-time Behavior of Nuclear Spin Decays in a Solid

    Full text link
    Magnetic resonance studies of nuclear spins in solids are exceptionally well suited to probe the limits of statistical physics. We report experimental results indicating that isolated macroscopic systems of interacting nuclear spins possess the following fundamental property: spin decays that start from different initial configurations quickly evolve towards the same long-time behavior. This long-time behavior is characterized by the shortest ballistic microscopic timescale of the system and therefore falls outside of the validity range for conventional approximations of statistical physics. We find that the nuclear free induction decay and different solid echoes in hyperpolarized solid xenon all exhibit sinusoidally modulated exponential long-time behavior characterized by identical time constants. This universality was previously predicted on the basis of analogy with resonances in classical chaotic systems.Comment: 4 pages main paper + 3 pages supporting material, 3 figure

    Bose-Einstein Condensation at a Helium Surface

    Full text link
    Path Integral Monte Carlo was used to calculate the Bose-Einstein condensate fraction at the surface of a helium film at T=0.77KT=0.77 K, as a function of density. Moving from the center of the slab to the surface, the condensate fraction was found to initially increase with decreasing density to a maximum value of 0.9 before decreasing. Long wavelength density correlations were observed in the static structure factor at the surface of the slab. Finally, a surface dispersion relation was calculated from imaginary-time density-density correlations.Comment: 8 pages, 5 figure

    Bunching Transitions on Vicinal Surfaces and Quantum N-mers

    Full text link
    We study vicinal crystal surfaces with the terrace-step-kink model on a discrete lattice. Including both a short-ranged attractive interaction and a long-ranged repulsive interaction arising from elastic forces, we discover a series of phases in which steps coalesce into bunches of n steps each. The value of n varies with temperature and the ratio of short to long range interaction strengths. We propose that the bunch phases have been observed in very recent experiments on Si surfaces. Within the context of a mapping of the model to a system of bosons on a 1D lattice, the bunch phases appear as quantum n-mers.Comment: 5 pages, RevTex; to appear in Phys. Rev. Let

    Adsorption in non interconnected pores open at one or at both ends: A reconsideration of the origin of the hysteresis phenomenon

    Get PDF
    We report on an experimental study of adsorption isotherme of nitrogen onto porous silicon with non interconnected pores open at one or at both ends in order to check for the first time the old (1938) but always current idea based on Cohan's description which suggests that the adsorption of gaz should occur reversibly in the first case and irreversibly in the second one. Hysteresis loops, the shape of which is usually associated to interconnections in porous media, are observed whether the pores are open at one or at both ends in contradiction with Cohan's model.Comment: 5 pages, 4 EPS figure

    Cooperation, Norms, and Revolutions: A Unified Game-Theoretical Approach

    Get PDF
    Cooperation is of utmost importance to society as a whole, but is often challenged by individual self-interests. While game theory has studied this problem extensively, there is little work on interactions within and across groups with different preferences or beliefs. Yet, people from different social or cultural backgrounds often meet and interact. This can yield conflict, since behavior that is considered cooperative by one population might be perceived as non-cooperative from the viewpoint of another. To understand the dynamics and outcome of the competitive interactions within and between groups, we study game-dynamical replicator equations for multiple populations with incompatible interests and different power (be this due to different population sizes, material resources, social capital, or other factors). These equations allow us to address various important questions: For example, can cooperation in the prisoner's dilemma be promoted, when two interacting groups have different preferences? Under what conditions can costly punishment, or other mechanisms, foster the evolution of norms? When does cooperation fail, leading to antagonistic behavior, conflict, or even revolutions? And what incentives are needed to reach peaceful agreements between groups with conflicting interests? Our detailed quantitative analysis reveals a large variety of interesting results, which are relevant for society, law and economics, and have implications for the evolution of language and culture as well
    • …
    corecore