121 research outputs found

    Photon-Mediated Interaction between Two Distant Atoms

    Full text link
    We study the photonic interactions between two distant atoms which are coupled by an optical element (a lens or an optical fiber) focussing part of their emitted radiation onto each other. Two regimes are distinguished depending on the ratio between the radiative lifetime of the atomic excited state and the propagation time of a photon between the two atoms. In the two regimes, well below saturation the dynamics exhibit either typical features of a bad resonator, where the atoms act as the mirrors, or typical characteristics of dipole-dipole interaction. We study the coherence properties of the emitted light and show that it carries signatures of the multiple scattering processes between the atoms. The model predictions are compared with the experimental results in J. Eschner {\it et al.}, Nature {\bf 413}, 495 (2001).Comment: 18 pages, 15 figure

    Conditions for spin squeezing in a cold 87Rb ensemble

    Full text link
    We study the conditions for generating spin squeezing via a quantum non-demolition measurement in an ensemble of cold 87Rb atoms. By considering the interaction of atoms in the 5S_{1/2}(F=1) ground state with probe light tuned near the D2 transition, we show that, for large detunings, this system is equivalent to a spin-1/2 system when suitable Zeeman substates and quantum operators are used to define a pseudo-spin. The degree of squeezing is derived for the rubidium system in the presence of scattering causing decoherence and loss. We describe how the system can decohere and lose atoms, and predict as much as 75% spin squeezing for atomic densities typical of optical dipole traps.Comment: 9 pages, 3 figures, submitted to J. Opt. B: Quantum Semiclass. Opt. Proceedings of ICSSUR'0

    Polarization-based Light-Atom Quantum Interface with an All-optical Trap

    Full text link
    We describe the implementation of a system for studying light-matter interactions using an ensemble of 10610^6 cold rubidium 87 atoms, trapped in a single-beam optical dipole trap. In this configuration the elongated shape of the atomic cloud increases the strength of the collective light-atom coupling. Trapping all-optically allows for long storage times in a low decoherence environment. We are able to perform several thousands of measurements on one atomic ensemble with little destruction. We report results on paramagnetic Faraday rotations from a macroscopically polarized atomic ensemble. Our results confirm that strong light-atom coupling is achievable in this system which makes it attractive for single-pass quantum information protocols.Comment: 8 pages, 4 figure

    Vacuum-field level shifts in a single trapped ion mediated by a single distant mirror

    Full text link
    A distant mirror leads to a vacuum-induced level shift in a laser-excited atom. This effect has been measured with a single mirror 25 cm away from a single, trapped barium ion. This dispersive action is the counterpart to the mirror's dissipative effect, which has been shown earlier to effect a change in the ion's spontaneous decay [J. Eschner et al., Nature 413, 495-498 (2001)]. The experimental data are well described by 8-level optical Bloch equations which are amended to take into account the presence of the mirror according to the model in [U. Dorner and P. Zoller, Phys. Rev. A 66, 023816 (2002)]. Observed deviations from simple dispersive behavior are attributed to multi-level effects.Comment: version accepted by PR

    A tunable narrowband entangled photon pair source for resonant single-photon single-atom interaction

    Full text link
    We present a tunable, frequency-stabilized, narrow-bandwidth source of frequency-degenerate, entangled photon pairs. The source is based on spontaneous parametric downconversion (SPDC) in periodically-poled KTiOPO4 (PPKTP). Its wavelength can be stabilized to 850 or 854 nm, thus allowing to address two D-P transitions in 40Ca+ ions. Its output bandwidth of 22 MHz coincides with the absorption bandwidth of the calcium ions. Its spectral power density is 1.0 generated pairs/(s MHz mW).Comment: 3 pages, 3 figure

    Quantum interference from remotely trapped ions

    Full text link
    We observe quantum interference of photons emitted by two continuously laser-excited single ions, independently trapped in distinct vacuum vessels. High contrast two-photon interference is observed in two experiments with different ion species, calcium and barium. Our experimental findings are quantitatively reproduced by Bloch equation calculations. In particular, we show that the coherence of the individual resonance fluorescence light field is determined from the observed interference

    Forces between a single atom and its distant mirror image

    Full text link
    An excited-state atom whose emitted light is back-reflected by a distant mirror can experience trapping forces, because the presence of the mirror modifies both the electromagnetic vacuum field and the atom's own radiation reaction field. We demonstrate this mechanical action using a single trapped barium ion. We observe the trapping conditions to be notably altered when the distant mirror is shifted by an optical wavelength. The well-localised barium ion enables the spatial dependence of the forces to be measured explicitly. The experiment has implications for quantum information processing and may be regarded as the most elementary optical tweezers.Comment: 4 pages, 5 figures, published versio

    Feedback cooling of a single trapped ion

    Full text link
    Based on a real-time measurement of the motion of a single ion in a Paul trap, we demonstrate its electro-mechanical cooling below the Doppler limit by homodyne feedback control (cold damping). The feedback cooling results are well described by a model based on a quantum mechanical Master Equation.Comment: 4 pages, 3 figure

    Cavity Assisted Nondestructive Laser Cooling of Atomic Qubits

    Full text link
    We analyze two configurations for laser cooling of neutral atoms whose internal states store qubits. The atoms are trapped in an optical lattice which is placed inside a cavity. We show that the coupling of the atoms to the damped cavity mode can provide a mechanism which leads to cooling of the motion without destroying the quantum information.Comment: 12 page
    • …
    corecore