research

Polarization-based Light-Atom Quantum Interface with an All-optical Trap

Abstract

We describe the implementation of a system for studying light-matter interactions using an ensemble of 10610^6 cold rubidium 87 atoms, trapped in a single-beam optical dipole trap. In this configuration the elongated shape of the atomic cloud increases the strength of the collective light-atom coupling. Trapping all-optically allows for long storage times in a low decoherence environment. We are able to perform several thousands of measurements on one atomic ensemble with little destruction. We report results on paramagnetic Faraday rotations from a macroscopically polarized atomic ensemble. Our results confirm that strong light-atom coupling is achievable in this system which makes it attractive for single-pass quantum information protocols.Comment: 8 pages, 4 figure

    Similar works