247 research outputs found

    Spin observables in deuteron-proton radiative capture at intermediate energies

    Get PDF
    A radiative deuteron-proton capture experiment was carried out at KVI using polarized-deuteron beams at incident energies of 55, 66.5, and 90 MeV/nucleon. Vector and tensor-analyzing powers were obtained for a large angular range. The results are interpreted with the help of Faddeev calculations, which are based on modern two- and three-nucleon potentials. Our data are described well by the calculations, and disagree significantly with the observed tensor anomaly at RCNP.Comment: 10 pages, 4 figures, submitted to PL

    Proton-deuteron radiative capture cross sections at intermediate energies

    Get PDF
    Differential cross sections of the reaction p(d,3He)γp(d,^3{\rm He})\gamma have been measured at deuteron laboratory energies of 110, 133 and 180 MeV. The data were obtained with a coincidence setup measuring both the outgoing 3^3He and the photon. The data are compared with modern calculations including all possible meson-exchange currents and two- and three- nucleon forces in the potential. The data clearly show a preference for one of the models, although the shape of the angular distribution cannot be reproduced by any of the presented models.Comment: 6 pages, 6 figures, accepted for publication in EPJ

    Effects of the magnetic moment interaction between nucleons on observables in the 3N continuum

    Get PDF
    The influence of the magnetic moment interaction of nucleons on nucleon-deuteron elastic scattering and breakup cross sections and on elastic scattering polarization observables has been studied. Among the numerous elastic scattering observables only the vector analyzing powers were found to show a significant effect, and of opposite sign for the proton-deuteron and neutron-deuteron systems. This finding results in an even larger discrepancy than the one previously established between neutron-deuteron data and theoretical calculations. For the breakup reaction the largest effect was found for the final-state-interaction cross sections. The consequences of this observation on previous determinations of the ^1S_0 scattering lengths from breakup data are discussed.Comment: 24 pages, 6 ps figures, 1 png figur

    Systematic investigation of the elastic proton-deuteron differential cross section at intermediate energies

    Get PDF
    To investigate the importance of three-nucleon forces (3NF) systematically over a broad range of intermediate energies, the differential cross sections of elastic proton-deuteron scattering have been measured at proton bombarding energies of 108, 120, 135, 150, 170 and 190 MeV at center-of-mass angles between 3030^\circ and 170170^\circ. Comparisons with Faddeev calculations show unambiguously the shortcomings of calculations employing only two-body forces and the necessity of including 3NF. They also show the limitations of the latest few-nucleon calculations at backward angles, especially at higher beam energies. Some of these discrepancies could be partially due to relativistic effects. Data at lowest energy are also compared with a recent calculation based on \chipt

    A new form of three-body Faddeev equations in the continuum

    Full text link
    We propose a novel approach to solve the three-nucleon (3N) Faddeev equation which avoids the complicated singularity pattern going with the moving logarithmic singularities of the standard approach. In this new approach the treatment of the 3N Faddeev equation becomes essentially as simple as the treatment of the two-body Lippmann-Schwinger equation. Very good agreement of the new and old approaches in the application to nucleon-deuteron elastic scattering and the breakup reaction is found.Comment: 20 pages, 3 eps figure

    Three-Nucleon Force Effects in Nucleon Induced Deuteron Breakup: Predictions of Current Models (I)

    Get PDF
    An extensive study of three-nucleon force effects in the entire phase space of the nucleon-deuteron breakup process, for energies from above the deuteron breakup threshold up to 200 MeV, has been performed. 3N Faddeev equations have been solved rigorously using the modern high precision nucleon-nucleon potentials AV18, CD Bonn, Nijm I, II and Nijm 93, and also adding 3N forces. We compare predictions for cross sections and various polarization observables when NN forces are used alone or when the two pion-exchange Tucson-Melbourne 3NF was combined with each of them. In addition AV18 was combined with the Urbana IX 3NF and CD Bonn with the TM' 3NF, which is a modified version of the TM 3NF, more consistent with chiral symmetry. Large but generally model dependent 3NF effects have been found in certain breakup configurations, especially at the higher energies, both for cross sections and spin observables. These results demonstrate the usefulness of the kinematically complete breakup reaction in testing the proper structure of 3N forces.Comment: 42 pages, 20 ps figures, 2 gif figure

    Search for Three-Nucleon Force Effects in Analyzing Powers for p→d Elastic Scattering

    Get PDF
    A series of measurements have been performed at KVI to obtain the vector analyzing power Ay of the 2H(p→,pd) reaction as a function of incident beam energy at energies of 120, 135, 150, and 170 MeV. For all these measurements, a range of ϑc.m. from 30° to 170° has been covered. The purpose of these investigations is to observe possible spin-dependent effects beyond two-nucleon forces. When compared to the predictions of Faddeev calculations, based on two-nucleon forces only, significant deviations are observed at all energies and at center-of-mass angles between 70° and 130°. The addition of present-day three-nucleon forces does not improve the description of the data, demonstrating the still insufficient understanding of the properties of three-nucleon systems
    corecore