175 research outputs found

    Localization of electric field distribution in graded core-shell metamaterials

    Full text link
    The local electric field distribution has been investigated in a core-shell cylindrical metamaterial structure under the illumination of a uniform incident optical field. The structure consists of a homogeneous dielectric core, a shell of graded metal-dielectric metamaterial, embedded in a uniform matrix. In the quasi-static limit, the permittivity of the metamaterial is given by the graded Drude model. The local electric potentials and hence the electric fields have been derived exactly and analytically in terms of hyper-geometric functions. Our results showed that the peak of the electric field inside the cylindrical shell can be confined in a desired position by varying the frequency of the optical field and the parameters of the graded profiles. Thus, by fabricating graded metamaterials, it is possible to control electric field distribution spatially. We offer an intuitive explanation for the gradation-controlled electric field distribution

    ARPES: A probe of electronic correlations

    Full text link
    Angle-resolved photoemission spectroscopy (ARPES) is one of the most direct methods of studying the electronic structure of solids. By measuring the kinetic energy and angular distribution of the electrons photoemitted from a sample illuminated with sufficiently high-energy radiation, one can gain information on both the energy and momentum of the electrons propagating inside a material. This is of vital importance in elucidating the connection between electronic, magnetic, and chemical structure of solids, in particular for those complex systems which cannot be appropriately described within the independent-particle picture. Among the various classes of complex systems, of great interest are the transition metal oxides, which have been at the center stage in condensed matter physics for the last four decades. Following a general introduction to the topic, we will lay the theoretical basis needed to understand the pivotal role of ARPES in the study of such systems. After a brief overview on the state-of-the-art capabilities of the technique, we will review some of the most interesting and relevant case studies of the novel physics revealed by ARPES in 3d-, 4d- and 5d-based oxides.Comment: Chapter to appear in "Strongly Correlated Systems: Experimental Techniques", edited by A. Avella and F. Mancini, Springer Series in Solid-State Sciences (2013). A high-resolution version can be found at: http://www.phas.ubc.ca/~quantmat/ARPES/PUBLICATIONS/Reviews/ARPES_Springer.pdf. arXiv admin note: text overlap with arXiv:cond-mat/0307085, arXiv:cond-mat/020850

    Carbon related defects in irradiated silicon revisited

    Get PDF
    Electronic structure calculations employing hybrid functionals are used to gain insight into the interaction of carbon (C) atoms, oxygen (O) interstitials, and self-interstitials in silicon (Si). We calculate the formation energies of the C related defects C(i)(Si(I)), C(i)O(i), C(i)C(s), and C(i)O(i)(Si(I)) with respect to the Fermi energy for all possible charge states. The C(i)(Si(I))(2+) state dominates in almost the whole Fermi energy range. The unpaired electron in the C(i)O(i)(+) state is mainly localized on the C interstitial so that spin polarization is able to lower the total energy. The three known atomic configurations of the C(i)C(s) pair are reproduced and it is demonstrated that hybrid functionals yield an improved energetic order for both the A and B-types as compared to previous theoretical studies. Different structures of the C(i)O(i)(Si(I)) cluster result for positive charge states in dramatically distinct electronic states around the Fermi energy and formation energies

    Pattern of childhood burn injuries and their management outcome at Bugando Medical Centre in Northwestern Tanzania

    Get PDF
    Burn injuries constitute a major public health problem and are the leading cause of childhood morbidity and mortality worldwide. There is paucity of published data on childhood burn injuries in Tanzania, particularly the study area. This study was conducted to describe the pattern of childhood burn injuries in our local setting and to evaluate their management outcome. A cross sectional study was conducted at Bugando Medical Centre (in Northwestern Tanzania) over a 3-year period from January 2008 to December 2010. Data was collected using a pre-tested coded questionnaire and statistical analyses performed using SPSS software version 15.0. A total of 342 burned children were studied. Males were mainly affected. Children aged = 2 were the majority accounting for 45.9% of cases. Intentional burn injuries due to child abuse were reported in 2.9% of cases. Scald was the most common type of burns (56.1%). The trunk was the most commonly involved body region (57.3%). Majority of patients (48.0%) sustained superficial burns. Eight (2.3%) patients were HIV positive. Most patients (89.8%) presented to the hospital later than 24 h. The rate of burn wound infection on admission and on 10th day were 32.4% and 39.8% respectively.Staphylococcus aureus were more common on admission wound swabs, with Pseudomonas aeruginosa becoming more evident after 10th day. MRSA was detected in 19.2% of Staphylococcus aureus. Conservative treatment was performed in 87.1% of cases. Surgical treatment mainly skin grafting (65.9%) was performed in 44 (12.9%) of patients. The overall average of the length of hospital stay (LOS) was 22.12 ± 16.62 days. Mortality rate was 11.7%. Using multivariate logistic regression analysis; age of the patient, type of burn, delayed presentation, clothing ignition, %TBSA and severity of burn were found to be significantly associated with LOS (P < 0.001), whereas mortality rate was found to be independently and significantly related to the age of the patient, type of burn, HIV positive with stigmata of AIDS, CD4 count, inhalation injury, %TBSA and severity of burn (P < 0.001). Childhood burn injuries still remain a menace in our environment with virtually unacceptable high morbidity and mortality. There is need for critical appraisal of the preventive measures and management principles currently being practiced

    Traditional use of the Andean flicker (Colaptes rupicola) as a galactagogue in the Peruvian Andes

    Get PDF
    This paper explores the use of the dried meat and feathers of the Andean Flicker (Colaptes rupicola) to increase the milk supply of nursing women and domestic animals in the Andes. The treatment is of preColumbian origin, but continues to be used in some areas, including the village in the southern Peruvian highlands where I do ethnographic research. I explore the factors giving rise to and sustaining the practice, relate it to other galactagogues used in the Andes and to the use of birds in ethnomedical and ethnoveterinary treatments in general, and situate it within the general tendency in the Andes and elsewhere to replicate human relations in the treatment of valuable livestock. The bird's use as a galactagogue appears to be motivated by both metaphorical associations and its perceived efficacy, and conceptually blends human and animal healthcare domains

    Resonances in a chaotic attractor crisis of the Lorenz Flow

    Get PDF
    Local bifurcations of stationary points and limit cycles have successfully been characterized in terms of the critical exponents of these solutions. Lyapunov exponents and their associated covariant Lyapunov vectors have been proposed as tools for supporting the understanding of critical transitions in chaotic dynamical systems. However, it is in general not clear how the statistical properties of dynamical systems change across a boundary crisis during which a chaotic attractor collides with a saddle. This behavior is investigated here for a boundary crisis in the Lorenz flow, for which neither the Lyapunov exponents nor the covariant Lyapunov vectors provide a criterion for the crisis. Instead, the convergence of the time evolution of probability densities to the invariant measure, governed by the semigroup of transfer operators, is expected to slow down at the approach of the crisis. Such convergence is described by the eigenvalues of the generator of this semigroup, which can be divided into two families, referred to as the stable and unstable Ruelle--Pollicott resonances, respectively. The former describes the convergence of densities to the attractor (or escape from a repeller) and is estimated from many short time series sampling the state space. The latter is responsible for the decay of correlations, or mixing, and can be estimated from a long times series, invoking ergodicity. It is found numerically for the Lorenz flow that the stable resonances do approach the imaginary axis during the crisis, as is indicative of the loss of global stability of the attractor. On the other hand, the unstable resonances, and a fortiori the decay of correlations, do not flag the proximity of the crisis, thus questioning the usual design of early warning indicators of boundary crises of chaotic attractors and the applicability of response theory close to such crises
    corecore