47 research outputs found

    Effect of trinucleotide repeat expansion on the expression of TCF4 mRNA in Fuchs' endothelial corneal dystrophy

    Get PDF
    Purpose: CTG trinucleotide repeat (TNR) expansion is frequently found in transcription factor 4 (TCF4) in Fuchs' endothelial corneal dystrophy (FECD), though the effect of TNR expansion on FECD pathophysiology remains unclear. The purpose of this study was to evaluate the effect of TNR expansion on TCF4 expression in corneal endothelium of patients with FECD. Methods: Peripheral blood DNA and Descemet membrane with corneal endothelium were obtained from 203 German patients with FECD. The CTG TNR repeat length in TCF4 was determined by short tandem repeat (STR) assays and Southern blotting using genomic DNA. Genotyping of rs613872 in TCF4 was performed by PCR. TCF4 mRNA levels in corneal endothelium were evaluated by quantitative PCR using three different probes. Control corneal endothelial samples were obtained from 35 non-FECD subjects. Results: The STR assay and Southern blotting showed that 162 of the 203 patients with FECD (80%) harbored CTG trinucleotide repeat lengths larger than 50. Quantitative PCR using all three probes demonstrated that TCF4 mRNA is significantly upregulated in the corneal endothelium of patients with FECD, regardless of the presence of TNR expansion. However, the length of the TNR tended to show a positive correlation with TCF4 expression level. No correlation was shown between the genotype of TCF4 SNP, rs613872, and the level of TCF4 expression. Conclusions: Our findings showed that TCF4 mRNA is upregulated in the corneal endothelium of patients with FECD. Further studies on the effects of TCF4 upregulation on corneal endothelial cell function will aid in understanding the pathophysiology of FECD

    Real time PCR detection of the PI*Z and PI*S mutations associated with alpha-1 antitrypsin deficiency

    Get PDF
    Alpha-1 antitrypsin (A1AT or AAT) is a serine protease inhibitor (PI) which, when present at low levels, can cause chronic obstructive pulmonary disease (COPD) and liver disease in both children and adults. Several mutations within the SERPINA1 gene have been found to cause this deficiency. The most common variants are PI*Z and PI*S, each caused by a single nucleotide polymorphism (SNP). We describe a real time polymerase chain reaction (PCR) assay for the rapid genotyping of these polymorphisms. DNA was extracted from fourteen EDTA-anticoagulated whole blood samples using the Qiagen EZ1 blood extraction kit. SNP genotyping was performed using primer/probe sets purchased from Applied Biosystems. These were evaluated for performance and assay conditions on the Applied Biosystems 7500 FAST System. The genotypes of these samples were compared with their phenotype results from isoelectric focusing assays, which were performed by an independent reference laboratory. In addition, twenty samples that were previously genotyped at another laboratory were obtained for accuracy studies. Thirty-four samples were tested; five genotypes were represented and the assay was able to discriminate these successfully. Only one genotype could not be correlated with its phenotype result, as the phenotype was reported as an “unidentified allele”. All other genotyping results were concordant with previously determined genotypes and phenotypes. We describe a rapid real time PCR assay that is suitable for clinical use in genotyping AAT alleles and which can be used as the initial step in A1AT testing algorithms

    Compound heterozygosity with a novel S222N GALT mutation leads to atypical galactosemia with loss of GALT activity in erythrocytes but little evidence of clinical disease

    No full text
    Galactosemia is an inborn error of galactose metabolism caused by mutations in the GALT gene. Though early detection and galactose restriction prevent severe liver disease, affected individuals have persistently elevated biomarkers and often neuro-developmental symptoms. We present a teenage compound heterozygote for a known pathogenic mutation (H132Q) and a novel variant of unknown significance (S222N), with nearly absent erythrocyte GALT enzyme activity but normal biomarkers and only mild anxiety despite diet non-adherence. This case is similar to a previously reported S135L mutation. In this report we investigate the novel S222N variant and critically evaluate a clinically puzzling case

    Biochemical and computational analyses of two phenotypically related GALT mutations (S222N and S135L) that lead to atypical galactosemia

    Get PDF
    Galactosemia is a metabolic disorder caused by mutations in the GALT gene [1,2]. We encountered a patient heterozygous for a known pathogenic H132Q mutation and a novel S222N variant of unknown significance [3]. Reminiscent of patients with the S135L mutation, our patient had loss of GALT enzyme activity in erythrocytes but a very mild clinical phenotype [3–8]. We performed splicing experiments and computational structural analyses to investigate the role of the novel S222N variant. Alamut software data predicted loss of splicing enhancers for the S222N and S135L mutations [9,10]. A cDNA library was generated from our patient׳s RNA to investigate for splicing errors, but no change in transcript length was seen [3]. In silico structural analysis was performed to investigate enzyme stability and attempt to understand the mechanism of the atypical galactosemia phenotype. Stability results are publicly available in the GALT Protein Database 2.0 [11–14]. Animations were created to give the reader a dynamic view of the enzyme structure and mutation locations. Protein database files and python scripts are included for further investigation
    corecore