1,912 research outputs found

    Common Cause Failure Modeling: Aerospace Versus Nuclear

    Get PDF
    Aggregate nuclear plant failure data is used to produce generic common-cause factors that are specifically for use in the common-cause failure models of NUREG/CR-5485. Furthermore, the models presented in NUREG/CR-5485 are specifically designed to incorporate two significantly distinct assumptions about the methods of surveillance testing from whence this aggregate failure data came. What are the implications of using these NUREG generic factors to model the common-cause failures of aerospace systems? Herein, the implications of using the NUREG generic factors in the modeling of aerospace systems are investigated in detail and strong recommendations for modeling the common-cause failures of aerospace systems are given

    Factors which Limit the Value of Additional Redundancy in Human Rated Launch Vehicle Systems

    Get PDF
    The National Aeronautics and Space Administration (NASA) has embarked on an ambitious program to return humans to the moon and beyond. As NASA moves forward in the development and design of new launch vehicles for future space exploration, it must fully consider the implications that rule-based requirements of redundancy or fault tolerance have on system reliability/risk. These considerations include common cause failure, increased system complexity, combined serial and parallel configurations, and the impact of design features implemented to control premature activation. These factors and others must be considered in trade studies to support design decisions that balance safety, reliability, performance and system complexity to achieve a relatively simple, operable system that provides the safest and most reliable system within the specified performance requirements. This paper describes conditions under which additional functional redundancy can impede improved system reliability. Examples from current NASA programs including the Ares I Upper Stage will be shown

    Large-Scale Cryogenic Testing of Launch Vehicle Ground Systems at the Kennedy Space Center

    Get PDF
    The development of a new launch vehicle to support NASA's future exploration plans requires significant redesign and upgrade of Kennedy Space Center's (KSC) launch pad and ground support equipment systems. In many cases, specialized test equipment and systems will be required to certify the function of the new system designs under simulated operational conditions, including propellant loading. This paper provides an overview of the cryogenic test infrastructure that is in place at KSC to conduct development and qualification testing that ranges from the component level to the integrated-system level. An overview of the major cryogenic test facilities will be provided, along with a detailed explanation of the technology focus area for each facilit

    Partition Function for (2+1)-Dimensional Einstein Gravity

    Get PDF
    Taking (2+1)-dimensional pure Einstein gravity for arbitrary genus gg as a model, we investigate the relation between the partition function formally defined on the entire phase space and the one written in terms of the reduced phase space. In particular the case of g=1g=1 is analyzed in detail. By a suitable gauge-fixing, the partition function ZZ basically reduces to the partition function defined for the reduced system, whose dynamical variables are (τA,pA)(\tau^A, p_A). [The τA\tau^A's are the Teichm\"uller parameters, and the pAp_A's are their conjugate momenta.] As for the case of g=1g=1, we find out that ZZ is also related with another reduced form, whose dynamical variables are (τA,pA)(\tau^A, p_A) and (V,σ)(V, \sigma). [Here σ\sigma is a conjugate momentum to 2-volume VV.] A nontrivial factor appears in the measure in terms of this type of reduced form. The factor turns out to be a Faddeev-Popov determinant coming from the time-reparameterization invariance inherent in this type of formulation. Thus the relation between two reduced forms becomes transparent even in the context of quantum theory. Furthermore for g=1g=1, a factor coming from the zero-modes of a differential operator P1P_1 can appear in the path-integral measure in the reduced representation of ZZ. It depends on the path-integral domain for the shift vector in ZZ: If it is defined to include kerP1\ker P_1, the nontrivial factor does not appear. On the other hand, if the integral domain is defined to exclude kerP1\ker P_1, the factor appears in the measure. This factor can depend on the dynamical variables, typically as a function of VV, and can influence the semiclassical dynamics of the (2+1)-dimensional spacetime. These results shall be significant from the viewpoint of quantum gravity.Comment: 21 pages. To appear in Physical Review D. The discussion on the path-integral domain for the shift vector has been adde

    Crystal Structure and Magnetism of the Linear-Chain Copper Oxides Sr5Pb3-xBixCuO12

    Full text link
    The title quasi-1D copper oxides (0=< x =<0.4) were investigated by neutron diffraction and magnetic susceptibility studies. Polyhedral CuO4 units in the compounds were found to comprise linear-chains at inter-chain distance of approximately 10 A. The parent chain compound (x = 0), however, shows less anisotropic magnetic behavior above 2 K, although it is of substantially antiferromagnetic (mu_{eff}= 1.85 mu_{B} and Theta_{W} = -46.4 K) spin-chain system. A magnetic cusp gradually appears at about 100 K in T vs chi with the Bi substitution. The cusp (x = 0.4) is fairly characterized by and therefore suggests the spin gap nature at Delta/k_{B} ~ 80 K. The chain compounds hold electrically insulating in the composition range.Comment: To be published in PR

    Effects of alternation in some quasi‐one‐dimensional magnetic materials

    Get PDF
    Exchange coupling in Cu(II) and Mn(III) compounds with unusual structures is discussed. {[Cu(bipyrimidine)(OH)(H2O)] (ClO4)}n has an alternatingly bridged structure with alternating ferromagnetic (+167.6 cm−1 through the hydroxo bridge) and antiferromagnetic (−79.8 cm−1 through the bipyrimidine bridge) interactions. Copper(II) phthalate monohydrate has alternating next‐nearest‐neighbor exchange with J=−12.3 cm−1 and α=0.06. This is the first member of this class. The compound K2[Mn(III) (salicylate)2][Mn(III) (salicylate)2]{CH3OH]2 has manganese ions in two environments alternating along the chain. A modified model for the chain is presented, and exchange coupling is found to be small since magnetic orbitals are not linked by the bridging ligand.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/70701/2/JAPIAU-69-8-6013-1.pd

    Copper Accumulation and the Effect of Chelation Treatment on Cerebral Amyloid Angiopathy Compared to Parenchymal Amyloid Plaques

    Get PDF
    Accumulation of fibrillar amyloid β-protein (Aβ) in parenchymal plaques and in blood vessels of the brain, the latter condition known as cerebral amyloid angiopathy (CAA), are hallmark pathologies of Alzheimer\u27s disease (AD) and related disorders. Cerebral amyloid deposits have been reported to accumulate various metals, most notably copper and zinc. Here we show that, in human AD, copper is preferentially accumulated in amyloid-containing brain blood vessels compared to parenchymal amyloid plaques. In light of this observation, we evaluated the effects of reducing copper levels in Tg2576 mice, a transgenic model of AD amyloid pathologies. The copper chelator, tetrathiomolybdate (TTM), was administered to twelve month old Tg2576 mice for a period of five months. Copper chelation treatment significantly reduced both CAA and parenchymal plaque load in Tg2576 mice. Further, copper chelation reduced parenchymal plaque copper content but had no effect on CAA copper levels in this model. These findings indicate that copper is associated with both CAA deposits and parenchymal amyloid plaques in humans, but less in Tg2576 mice. TTM only reduces copper levels in plaques in Tg2576 mice. Reducing copper levels in the brain may beneficially lower amyloid pathologies associated with AD
    corecore