3,677 research outputs found

    Perturbative Analysis of Spectral Singularities and Their Optical Realizations

    Full text link
    We develop a perturbative method of computing spectral singularities of a Schreodinger operator defined by a general complex potential that vanishes outside a closed interval. These can be realized as zero-width resonances in optical gain media and correspond to a lasing effect that occurs at the threshold gain. Their time-reversed copies yield coherent perfect absorption of light that is also known as an antilaser. We use our general results to establish the exactness of the n-th order perturbation theory for an arbitrary complex potential consisting of n delta-functions, obtain an exact expression for the transfer matrix of these potentials, and examine spectral singularities of complex barrier potentials of arbitrary shape. In the context of optical spectral singularities, these correspond to inhomogeneous gain media.Comment: 13 pages, 2 figures, one table, a reference added, typos correcte

    Atom-molecule conversion with particle losses

    Full text link
    Based on the mean-field approximation and the phase space analysis, we study the dynamics of an atom-molecule conversion system subject to particle loss. Starting from the many-body dynamics described by a master equation, an effective nonlinear Schr\"odinger equation is introduced. The classical phase space is then specified and classified by fixed points. The boundary, which separate different dynamical regimes have been calculated and discussed. The effect of particle loss on the conversion efficiency and the self-trapping is explored.Comment: 6 pages, 5 figure

    J0316+4328: a Probable "Asymmetric Double" Lens

    Full text link
    We report a probable gravitational lens J0316+4328, one of 19 candidate asymmetric double lenses (2 images at a high flux density ratio) from CLASS. Observations with the Very Large Array (VLA), MERLIN and the Very Long Baseline Array (VLBA) imply that J0316+4328 is a lens with high confidence. It has 2 images separated by 0.40", with 6 GHz flux densities of 62 mJy and 3.2 mJy. The flux density ratio of ~19 (constant over the frequency range 6-22 GHz) is the largest for any 2 image gravitational lens. High resolution optical imaging and deeper VLBI maps should confirm the lensing interpretation and provide inputs to detailed lens models. The unique configuration will give strong constraints on the lens galaxy's mass profile.Comment: Accepted to MNRAS Letters. 5 pages, 6 figures, 3 table

    Gravitational waves from extreme mass-ratio inspirals in Dynamical Chern-Simons gravity

    Full text link
    Dynamical Chern-Simons gravity is an interesting extension of General Relativity, which finds its way in many different contexts, including string theory, cosmological settings and loop quantum gravity. In this theory, the gravitational field is coupled to a scalar field by a parity-violating term, which gives rise to characteristic signatures. Here we investigate how Chern-Simons gravity would affect the quasi-circular inspiralling of a small, stellar-mass object into a large non-rotating supermassive black hole, and the accompanying emission of gravitational and scalar waves. We find the relevant equations describing the perturbation induced by the small object, and we solve them through the use of Green's function techniques. Our results show that for a wide range of coupling parameters, the Chern-Simons coupling gives rise to an increase in total energy flux, which translates into a fewer number of gravitational-wave cycles over a certain bandwidth. For space-based gravitational-wave detectors such as LISA, this effect can be used to constrain the coupling parameter effectively.Comment: RevTex4, 18 pages, 7 figures, 1 tabl

    A Complete Sample of Megaparsec Size Double Radio Sources from SUMSS

    Get PDF
    We present a complete sample of megaparsec-size double radio sources compiled from the Sydney University Molonglo Sky Survey (SUMSS). Almost complete redshift information has been obtained for the sample. The sample has the following defining criteria: Galactic latitude |b| > 12.5 deg, declination < -50 deg and angular size > 5 arcmin. All the sources have projected linear size larger than 0.7 Mpc (assuming H_o = 71 km/s/Mpc). The sample is chosen from a region of the sky covering 2100 square degrees. In this paper, we present 843-MHz radio images of the extended radio morphologies made using the Molonglo Observatory Synthesis Telescope (MOST), higher resolution radio observations of any compact radio structures using the Australia Telescope Compact Array (ATCA), and low resolution optical spectra of the host galaxies from the 2.3-m Australian National University (ANU) telescope at Siding Spring Observatory. The sample presented here is the first in the southern hemisphere and significantly enhances the database of known giant radio sources. The giant radio sources with linear size exceeding 0.7 Mpc have an abundance of (215 Mpc)^(-3) at the sensitivity of the survey. In the low redshift universe, the survey may be suggesting the possibility that giant radio sources with relict lobes are more numerous than giant sources in which beams from the centre currently energize the lobes.Comment: 67 pages, 29 figures, for full resolution figures see http://www.astrop.physics.usyd.edu.au/SUMSS/PAPERS/Submit-May11-ms.pd

    Derivation of the formyl-group oxygen of chlorophyll b from molecular oxygen in greening leaves of a higher plant (Zea mays)

    Get PDF
    Using mass spectroscopy, we demonstrate as much as 93% enrichment of the 7-formyl group oxygen of chlorophyll b when dark-grown, etiolated maize leaves are greened under white light in the presence of 18O2. This suggests that a mono-oxygenase is involved in the oxidation of its methyl group precursor. The concomitant enrichment of about 75% of the 131-oxygen confirms the well-documented finding that this oxo group, in both chlorophyll a and b, also arises from O2. High 18O enrichment into the 7-formyl oxygen relative to the substrate 18O2 was achieved by optimization of the greening conditions in combination with a reductive extraction procedure. It indicates not only a single pathway for Chl b formyl group formation, but also unequivocally demonstrates that molecular oxygen is the sole precursor of the 7-formyl oxygen

    The geometry of thermodynamic control

    Full text link
    A deeper understanding of nonequilibrium phenomena is needed to reveal the principles governing natural and synthetic molecular machines. Recent work has shown that when a thermodynamic system is driven from equilibrium then, in the linear response regime, the space of controllable parameters has a Riemannian geometry induced by a generalized friction tensor. We exploit this geometric insight to construct closed-form expressions for minimal-dissipation protocols for a particle diffusing in a one dimensional harmonic potential, where the spring constant, inverse temperature, and trap location are adjusted simultaneously. These optimal protocols are geodesics on the Riemannian manifold, and reveal that this simple model has a surprisingly rich geometry. We test these optimal protocols via a numerical implementation of the Fokker-Planck equation and demonstrate that the friction tensor arises naturally from a first order expansion in temporal derivatives of the control parameters, without appealing directly to linear response theory

    Synchronization in small-world systems

    Full text link
    We quantify the dynamical implications of the small-world phenomenon. We consider the generic synchronization of oscillator networks of arbitrary topology, and link the linear stability of the synchronous state to an algebraic condition of the Laplacian of the graph. We show numerically that the addition of random shortcuts produces improved network synchronizability. Further, we use a perturbation analysis to place the synchronization threshold in relation to the boundaries of the small-world region. Our results also show that small-worlds synchronize as efficiently as random graphs and hypercubes, and more so than standard constructive graphs
    corecore