985 research outputs found

    Questions For Baptists

    Get PDF
    https://digitalcommons.acu.edu/crs_books/1410/thumbnail.jp

    Force calculation on walls and embedded particles in multiparticle collision dynamics simulations

    Get PDF
    Colloidal solutions posses a wide range of time and length scales, so that it is unfeasible to keep track of all of them within a single simulation. As a consequence some form of coarse-graining must be applied. In this work we use the Multi-Particle Collision Dynamics scheme. We describe a particular implementation of no-slip boundary conditions upon a solid surface, capable of providing correct force s on the solid bypassing the calculation of the velocity profile or the stre ss tensor in the fluid near the surface. As an application we measure the friction on a spherical particle, when it is placed in a bulk fluid and when it is confined in a slit. We show that the implementation of the no-slip boundary conditions leads to an enhanced Ensko g friction, which can be understood analytically. Because of the long-range nature of hydrodynamic interactions, the Stokes friction obtained from the simulations is sensitive of the simulation box size. We address this topic for the slit geometry, showing that that the dependence on the system size differs very much from what is expected in a 3D system, where periodic boundary conditions are used in all directions.Comment: To appear in Physical Review

    Schilddrüse

    Get PDF

    Effect of external magnetic field on electron spin dephasing induced by hyperfine interaction in quantum dots

    Full text link
    We investigate the influence of an external magnetic field on spin phase relaxation of single electrons in semiconductor quantum dots induced by the hyperfine interaction. The basic decay mechanism is attributed to the dispersion of local effective nuclear fields over the ensemble of quantum dots. The characteristics of electron spin dephasing is analyzed by taking an average over the nuclear spin distribution. We find that the dephasing rate can be estimated as a spin precession frequency caused primarily by the mean value of the local nuclear magnetic field. Furthermore, it is shown that the hyperfine interaction does not fully depolarize electron spin. The loss of initial spin polarization during the dephasing process depends strongly on the external magnetic field, leading to the possibility of effective suppression of this mechanism.Comment: 10 pages, 2 figure

    Effects of an in-plane magnetic field on c-axis sum rule and superfluid density in high-TcT_{c} cuprates

    Full text link
    In layered cuprates, the application of an in-plane magnetic field (H)({\bf H}) changes the c-axis optical sum rule and superfluid density ρs\rho_{s}. For pure incoherent c-axis coupling, H{\bf H} has no effect on either quantities but it does if an additional coherent component is present. For the coherent contribution, different characteristic variations on H{\bf H} and on temperature result from the constant part (t)(t_{\perp}) of the hopping matrix element and from the part (tϕ)(t_{\phi}) which has zero on the diagonal of the Brillouin zone. Only the constant part (t)(t_{\perp}) leads to a dependence on the direction of H{\bf H} as well as on its magnitude.Comment: 3 figure

    Transport properties in the d-density wave state: Wiedemann-Franz law

    Full text link
    We study the Wiedemann-Franz (WF) law in the d-density wave (DDW) model. Even though the opening of the DDW gap (W0)(W_{0}) profoundly modifies the electronic density of states and makes it dependent on energy, the value of the WF ratio at zero temperature (T=0) remains unchanged. However, neither electrical nor thermal conductivity display universal behavior. For finite temperature, with T greater than the value of the impurity scattering rate at zero frequency γ(0)\gamma(0) i.e. γ(0)<TW0\gamma(0)<T\ll W_{0}, the usual WF ratio is obtained only in the weak scattering limit. For strong scattering there are large violations of the WF law.Comment: 1 figur

    Observation of Apparently Zero-Conductance States in Corbino Samples

    Full text link
    Using Corbino samples we have observed oscillatory conductance in a high-mobility two-dimensional electron system subjected to crossed microwave and magnetic fields. On the strongest of the oscillation minima the conductance is found to be vanishingly small, possibly indicating an insulating state associated with these minima.Comment: 4 pages, 3 figures, RevTex

    A conceptual basis for surveying fouling communities at exposed and protected sites at sea: Feasible designs with exchangeable test bodies for in-situ biofouling collection

    Get PDF
    The enhanced inertia load caused by biofouling on device components, such as the foundations of wind turbines or other structures at sea, modifies the hydrodynamic properties, and increases the stress to structures, predominantly in upper water layers with high impact from wave dynamics. This compromises the stability, functioning, operation as well as the durability of these devices especially in exposed environments. A main challenge is the quantification of the impact of hydrodynamic forces on irregular bodies being overgrown by soft- and hard-bodied biofouling organisms. Therefore, test bodies from the upper 1–5 m water depth and thus exposed to the strongest wave actions close to the surface shall be overgrown by biofouling and used in measurement trials in a wave and current flume. These measurements shall shed light on the varying roughness and its influence on the load bearing capacity of foundation piles. Consequently, the main aims of the present work were the development of two independent test stations as holding devices for artificial test bodies for the collection of biofouling organisms during field studies: a carrying unit floating at the surface in an exposed area (System A) and a sampling device with access from a land-based facility (System B). Both systems are relatively easy to access, exhibit straightforward handling, and are reasonable cost-effective. A Test Body Support Unit (TBSU, System A) was designed and mounted on a spare buoy to carry the test bodies (cylinders), which serve as substrate for the fouling. The system was sufficiently robust to withstand several periods of rough sea conditions over the first two years. This system can only be accessed by vessels. System B (MareLift) provided the robustness and functionality needed for areas exhibiting harsh conditions but can be operated from land. The here used test bodies (steel panels) exhibited a sound basis for the monitoring of succession processes in the biofouling development. System B offered the possibility to analyse two habitats (intertidal and subtidal) and revealed clear differences in the composition and development of their fouling communities. Overall, both systems provide advantages in obtaining standardized biofouling samples compared to previous approaches. Such test stations play an important role in the risk management of marine sectors as they could help characterising biofouling communities over different geographical areas. System A and B provide a sound basis for biofouling research but potentially also for other potential research approaches in exposed areas as they provide space for future developments

    Radiation induced oscillatory Hall effect in high mobility GaAs/AlGaAs devices

    Get PDF
    We examine the radiation induced modification of the Hall effect in high mobility GaAs/AlGaAs devices that exhibit vanishing resistance under microwave excitation. The modification in the Hall effect upon irradiation is characterized by (a) a small reduction in the slope of the Hall resistance curve with respect to the dark value, (b) a periodic reduction in the magnitude of the Hall resistance, RxyR_{xy}, that correlates with an increase in the diagonal resistance, RxxR_{xx}, and (c) a Hall resistance correction that disappears as the diagonal resistance vanishes.Comment: 4 pages text, 4 color figure

    Interlayer coupling and the c-axis quasiparticle transport in high-TcT_{c} cuprates

    Full text link
    The c-axis quasiparticle conductivity shows different behavior depending on the nature of the interlayer coupling. For coherent coupling with a constant hopping amplitude tt_{\perp}, the conductivity at zero frequency and zero temperature σ(0,0)\sigma(0,0) depends on the direction of the magnetic field, but it does not for angle-dependent hopping t(ϕ)t(\phi) which removes the contribution of the nodal quasiparticles. For incoherent coupling, the conductivity is also independent of field direction and changes only when paramagnetic effects are included. The conductivity sum rule can be used to determine the admixture of coherent to incoherent coupling. The value of σ(0,0)\sigma(0,0) can be dominated by tt_{\perp} while at the same time t(ϕ)t(\phi) dominates the temperature dependence of the superfluid density.Comment: 2 figure
    corecore