13,304 research outputs found

    Gulf Stream Meanders: Observations on the Deep Currents

    Get PDF
    During 1979–1980, an array of inverted echo sounders (IES) and three deep current meter moorings were deployed on the continental slope 100–200 km northeast of Cape Hatteras, North Carolina. This array continuously monitored the path of the Gulf Stream and the deep currents under it. The mean currents at two sites 1000 m off the bottom near the northern edge of the stream were veered to the right of the mean surface path, indicating a deep inflow to the stream. Mean currents 500 and 1000 m off the bottom 50 km farther offshore were northeastward, nearly colinear with the surface Gulf Stream path. The deep velocity fluctuations are characterized by a transition from transverse flow aligned with the local bathymetry for periods longer than about 12 days to fluctuations with a cross-stream orientation for shorter periods. For periods between 4 days and 1 month, cross-stream movements of the Gulf Stream temperature front are vertically coherent and nearly barotropic, based on correlations between the IES-measured stream path and deep temperature fluctuations. Temperature fluctuations at the current meter sites lead cross-stream (positive onshore) velocity fluctuations by approximately 90°. Consideration of the nondiffusive fluctuating heat equation for deep layers suggests a three-term balance between local rate of change, cross-stream horizontal advection, and vertical advection of temperature, with the first two being of like sign. Kinematically, this requires |wTz| \u3e |υTy|, so that parcel trajectories in the cross-stream plane are inclined at angles steeper than the mean cross-stream slope of the isotherms. Eddy energy conversion between the fluctuations and the mean field in deep layers is predominantly baroclinic, with e-folding growth time scales of approximately 10 days

    The V3, V4 and V6 bands of formaldehyde: A spectral catalog from 900 cm(-1) to 1580 cm(-1)

    Get PDF
    The results of a complete high resolution study of the three vibration-rotation bands v sub 3, v sub 4, and V sub 6 using both TDLs and FT-IR spectroscopy are presented. The reults are given in terms of a table of over 8000 predicted transition frequencies and strengths. A plot of the predicted and calculated spectra is shown. Over 3000 transitions were assigned and used in the simultaneous analysis of the three bands. The simultaneous fit permitted a rigorous study of Coriolis and other type iterations among bands yielding improved molecular constants. Line intensities of 28 transitions measured by a TDL and 20 transitions from FTS data were used, along with the eigenvectors from the frequency fitting, in a least squares analysis to evaluate the band strengths

    Time scales and structure of topographic Rossby waves and meanders in the deep Gulf Stream

    Get PDF
    During July–November 1982, current and temperature records were collected from six current meters spanning the lower 2000 m of the water column on two moorings in the Gulf Stream northeast of Cape Hatteras, N.C. Frequency domain EOF analysis of the velocity cross-spectra reveals that there are two kinematically distinct wave processes present in the subinertial range, identifiable as topographic Rossby wave and meander-associated motions, which are energetically dominant at periods longer than and shorter than 14 days, respectively. Simultaneous thermocline depth measurements obtained using inverted echo sounders show that the low-frequency topographic Rossby wave motions are uncoupled with near-surface displacements of the Gulf Stream path, but that cross-stream velocity fluctuations in the 14-day and 5-day period bands are associated with vertically coherent meanders of the Gulf Stream temperature front

    Applicability of ERTS-1 to Montana geology

    Get PDF
    The author has identified the following significant results. Late autumn imagery provides the advantages of topographic shadow enhancement and low cloud cover. Mapping of rock units was done locally with good results for alluvium, basin fill, volcanics, inclined Paleozoic and Mesozoic beds, and host strata of bentonite beds. Folds, intrusive domes, and even dip directions were mapped where differential erosion was significant. However, mapping was not possible for belt strata, was difficult for granite, and was hindered by conifers compared to grass cover. Expansion of local mapping required geologic control and encountered significant areas unmappable from ERTS imagery. Annotation of lineaments provided much new geologic data. By extrapolating test site comparisons, it is inferred that 27 percent of some 1200 lineaments mapped from western Montana represent unknown faults. The remainder appear to be localized mainly by undiscovered faults and sets of minor faults or joints

    Engine inlet distortion in a 9.2 percent scale vectored thrust STOVL model in ground effect

    Get PDF
    Advanced Short Takeoff/Vertical Landing (STOVL) aircraft which can operate from remote locations, damaged runways, and small air capable ships are being pursued for deployment around the turn of the century. To achieve this goal, NASA Lewis Research Center, McDonnell Douglas Aircraft, and DARPA defined a cooperative program for testing in the NASA Lewis 9- by 15-foot low speed wind tunnel (LSWT) to establish a database for hot gas ingestion, one of the technologies critical to STOVL. Results are presented which show the engine inlet distortions (both temperature and pressure) in a 9.2 percent scale vectored thrust STOVL model in ground effects. Results are shown for the forward nozzle splay angles of 0 degrees, -6 degrees, and 18 degrees. The model support system had 4 degrees of freedom, heated high pressure air for nozzle flow, and a suction system exhaust for inlet flow. The headwind (freestream) velocity was varied from 8 to 23 knots

    The CMS Pixel FED

    Get PDF
    The innermost detector of the CMS Experiment consists of 66 million silicon pixels. The hit data has to be read out and must be digitized, synchronized, formatted and transferred over the S-Link to the CMS DAQ. The amount of data can only be handled because the readout chip (ROC) delivers zero-suppressed data above an adjustable threshold for every pixel. The Pixel FED 9U VME module receives an analog optical signal, which is subsequently digitized and processed. The position of the pixel on a module is transmitted with five symbols coded in six pulse height steps each. The data of 36 inputs build a final event data block. The data block from each detector module with either 16 or 24 ROCs differs in length and arrival time. Depending on the data length and trigger rate, there can be a skew of several events between any two inputs. That is possible because the ROC has a multievent time stamp memory and the readout bandwith is limited. Finally the information processed by the Pixel FED will be transferred over the S-Link to the CMS DAQ. Each module must be able to process a trigger rate of 100 kHz or, if in trouble, to send an alarm signal. The number of inputs is limited by the maximum data transmission rate of the S-Link (640 MB/s) for the expected high luminosity of LHC. The data flow on the module is continuously controlled. Errors are written in an error memory, included in the data stream and if critical sent to the general CMS readout control

    Applicability of ERTS-1 to lineament and photogeologic mapping in Montana: Preliminary report

    Get PDF
    A lineament map prepared from a mosaic of western Montana shows about 85 lines not represented on the state geologic map, including elements of a northeast-trending set through central western Montana which merit ground truth checking and consideration in regional structural analysis. Experimental fold annotation resulted in a significant local correction to the state geologic map. Photogeologic mapping studies produced only limited success in identification of rock types, but they did result in the precise delineation of a late Cretaceous or early Tertiary volcanic field (Adel Mountain field) and the mapping of a connection between two granitic bodies shown on the state map. Imagery was used successfully to map clay pans associated with bentonite beds in gently dipping Bearpaw Shale. It is already apparent that ERTS imagery should be used to facilitate preparation of a much needed statewide tectonic map and that satellite imagery mapping, aided by ground calibration, provides and economical means to discover and correct errors in the state geologic map

    Hot gas ingestion characteristics and flow visualization of a vectored thrust STOVL concept

    Get PDF
    A 9.2 percent scale short takeoff and vertical landing (STOVL) hot gas ingestion model was designed and built by McDonnell Douglas Corporation (MCAIR) and tested in the NASA Lewis Research Center 9- by 15-Foot Low Speed Wind Tunnel (LSWT). Hot gas ingestion, the entrainment of heated engine exhaust into the inlet flow field, is a key development issue for advanced short takeoff and vertical landing aircraft. The Phase 1 test program, conducted by NASA Lewis and McDonnell Douglas Corporation, evaluated the hot ingestion phenomena and control techniques and Phase 2 test program which was conducted by NASA Lewis are both reported. The Phase 2 program was conducted at exhaust nozzles temperatures up to 1460 R and utilized a sheet laser system for flow visualization of the model flow field in and out of ground effects. Hot gas ingestion levels were measured for the several forward nozzle splay configurations and with flow control/lift improvement devices which reduced the hot gas ingestion. The model support system had four degrees of freedom, heated high pressure air for nozzle flow, and a suction system exhaust for inlet flow. The headwind (freestream) velocity for Phase 1 was varied from 8 to 90 kn, with primary data taken in the 8 to 23 kn headwind velocity range. Phase 2 headwind velocity varied from 10 to 23 kn. Results of both Phase 1 and 2 are presented. A description of the model, facility, a new model support system, and a sheet laser illumination system are also provided. Results are presented over a range of main landing gear height (model height) above the ground plane at a 10 kn headwind velocity. The results contain the compressor face pressure and temperature distortions, total pressure recovery, compressor face temperature rise, and the environmental effects of the hot gas. The environmental effects include the ground plane temperature and pressure distributions, model airframe heating, and the location of the ground flow separation. Results from the sheet laser flow visualization test are also shown

    Star Spot Induced Radial Velocity Variability in LkCa 19

    Full text link
    We describe a new radial velocity survey of T Tauri stars and present the first results. Our search is motivated by an interest in detecting massive young planets, as well as investigating the origin of the brown dwarf desert. As part of this survey, we discovered large-amplitude, periodic, radial velocity variations in the spectrum of the weak line T Tauri star LkCa 19. Using line bisector analysis and a new simulation of the effect of star spots on the photometric and radial velocity variability of T Tauri stars, we show that our measured radial velocities for LkCa19 are fully consistent with variations caused by the presence of large star spots on this rapidly rotating young star. These results illustrate the level of activity-induced radial velocity noise associated with at least some very young stars. This activity-induced noise will set lower limits on the mass of a companion detectable around LkCa 19, and similarly active young stars.Comment: ApJ accepted, 27 pages, 12 figures, aaste

    The Magnetic Fields of Classical T Tauri Stars

    Full text link
    We report new magnetic field measurements for 14 classical T Tauri stars (CTTSs). We combine these data with one previous field determination in order to compare our observed field strengths with the field strengths predicted by magnetospheric accretion models. We use literature data on the stellar mass, radius, rotation period, and disk accretion rate to predict the field strength that should be present on each of our stars according to these magnetospheric accretion models. We show that our measured field values do not correlate with the field strengths predicted by simple magnetospheric accretion theory. We also use our field strength measurements and literature X-ray luminosity data to test a recent relationship expressing X-ray luminosity as a function of surface magnetic flux derived from various solar feature and main sequence star measurements. We find that the T Tauri stars we have observed have weaker than expected X-ray emission by over an order of magnitude on average using this relationship. We suggest the cause for this is actually a result of the very strong fields on these stars which decreases the efficiency with which gas motions in the photosphere can tangle magnetic flux tubes in the corona.Comment: 25 pages, 5 figure
    corecore