9,324 research outputs found

    Mechanical positioning device for Langmuir probe

    Get PDF
    Lightweight, portable device has been developed to permit probe movement in two planes. It also provides accurate information about location of probe tip in a closed chamber

    The Rehabilitation of Man- a Contemporary German View

    Get PDF
    Public lecture delivered at the Rice Institute on November 26, 195

    Chemistry vs. Physics: A Comparison of How Biology Majors View Each Discipline

    Get PDF
    A student's beliefs about science and learning science may be more or less sophisticated depending on the specific science discipline. In this study, we used the physics and chemistry versions of the Colorado Learning Attitudes about Science Survey (CLASS) to measure student beliefs in the large, introductory physics and chemistry courses, respectively. We compare how biology majors -- generally required to take both of the courses -- view these two disciplines. We find that these students' beliefs are more sophisticated about physics (more like the experts in that discipline) than they are about chemistry. At the start of the term, the average % Overall Favorable score on the CLASS is 59% in physics and 53% in chemistry. The students' responses are statistically more expert-like in physics than in chemistry on 10 statements (P lesser-than-or-equal-to 0.01), indicating that these students think chemistry is more about memorizing disconnected pieces of information and sample problems, and has less to do with the real world. In addition, these students' view of chemistry degraded over the course of the term. Their favorable scores shifted -5.7% and -13.5% in 'Overall' and the 'Real World Connection' category, respectively; in the physics course, which used a variety of research-based teaching practices, these scores shifted 0.0% and +0.3%, respectively. The chemistry shifts are comparable to those previously observed in traditional introductory physics courses

    STM and ab initio study of holmium nanowires on a Ge(111) Surface

    Full text link
    A nanorod structure has been observed on the Ho/Ge(111) surface using scanning tunneling microscopy (STM). The rods do not require patterning of the surface or defects such as step edges in order to grow as is the case for nanorods on Si(111). At low holmium coverage the nanorods exist as isolated nanostructures while at high coverage they form a periodic 5x1 structure. We propose a structural model for the 5x1 unit cell and show using an ab initio calculation that the STM profile of our model structure compares favorably to that obtained experimentally for both filled and empty states sampling. The calculated local density of states shows that the nanorod is metallic in character.Comment: 4 pages, 12 figures (inc. subfigures). Presented at the the APS March meeting, Baltimore MD, 200

    Complete genome sequence of BK polyomavirus subtype Ib-1 detected in a kidney transplant patient with BK viremia using shotgun sequencing

    Get PDF
    We report here the complete genome sequence of polyomavirus BK subtype Ib-1, isolate AR11, identified in urine from a human kidney transplant recipient with a clinical diagnosis of BK viremia. The AR11 isolate is closely related to reference strain human polyomavirus 1 isolate J2B-2 with 99% identity

    The Design and Validation of the Colorado Learning Attitudes about Science Survey

    Get PDF
    The Colorado Learning Attitudes about Science Survey (CLASS) is a new instrument designed to measure various facets of student attitudes and beliefs about learning physics. This instrument extends previous work by probing additional facets of student attitudes and beliefs. It has been written to be suitably worded for students in a variety of different courses. This paper introduces the CLASS and its design and validation studies, which include analyzing results from over 2400 students, interviews and factor analyses. Methodology used to determine categories and how to analyze the robustness of categories for probing various facets of student learning are also described. This paper serves as the foundation for the results and conclusions from the analysis of our survey dat

    Correlating Student Beliefs With Student Learning Using The Colorado Learning Attitudes about Science Survey

    Get PDF
    A number of instruments have been designed to probe the variety of attitudes, beliefs, expectations, and epistemological frames taught in our introductory physics courses. Using a newly developed instrument -- the Colorado Learning Attitudes about Science Survey (CLASS)[1] -- we examine the relationship between students' beliefs about physics and other educational outcomes, such as conceptual learning and student retention. We report results from surveys of over 750 students in a variety of courses, including several courses modified to promote favorable beliefs about physics. We find positive correlations between particular student beliefs and conceptual learning gains, and between student retention and favorable beliefs in select categories. We also note the influence of teaching practices on student beliefs

    Towards characterizing the relationship between students' interest in and their beliefs about physics

    Get PDF
    We examine the relationships between students' self-reported interest and their responses to a physics beliefs survey. Results from the Colorado Learning Attitudes about Science Survey (CLASS v3), collected in a large calculusbased introductory mechanics course (N=391), were used to characterize students' beliefs about physics and learning physics at the beginning and end of the semester. Additionally students were asked at the end of the semester to rate their interest in physics, how it has changed, and why. We find a correlation between surveyed beliefs and self-rated interest (R=0.65). At the end of the term, students with more expert-like beliefs as measured by the 'Overall' CLASS score also rate themselves as more interested in physics. An analysis of students' reasons for why their interest changed showed that a sizable fraction of students cited reasons tied to beliefs about physics or learning physics as probed by the CLASS survey. The leading reason for increased interest was the connection between physics and the real world
    corecore