4,817 research outputs found

    Formation Time of a Fermion Pair Condensate

    Full text link
    The formation time of a condensate of fermionic atom pairs close to a Feshbach resonance was studied. This was done using a phase-shift method in which the delayed response of the many-body system to a modulation of the interaction strength was recorded. The observable was the fraction of condensed molecules in the cloud after a rapid magnetic field ramp across the Feshbach resonance. The measured response time was slow compared to the rapid ramp, which provides final proof that the molecular condensates reflect the presence of fermion pair condensates before the ramp.Comment: 5 pages, 4 figure

    Phase dynamics of a multimode Bose condensate controlled by decay

    Full text link
    The relative phase between two uncoupled BE condensates tends to attain a specific value when the phase is measured. This can be done by observing their decay products in interference. We discuss exactly solvable models for this process in cases where competing observation channels drive the phases to different sets of values. We treat the case of two modes which both emit into the input ports of two beam splitters, and of a linear or circular chain of modes. In these latter cases, the transitivity of relative phase becomes an issue

    Dissipation-induced d-Wave Pairing of Fermionic Atoms in an Optical Lattice

    Full text link
    We show how dissipative dynamics can give rise to pairing for two-component fermions on a lattice. In particular, we construct a "parent" Liouvillian operator so that a BCS-type state of a given symmetry, e.g. a d-wave state, is reached for arbitrary initial states in the absence of conservative forces. The system-bath couplings describe single-particle, number conserving and quasi-local processes. The pairing mechanism crucially relies on Fermi statistics. We show how such Liouvillians can be realized via reservoir engineering with cold atoms representing a driven dissipative dynamics.Comment: 5 pages, 3 figures. Replaced with the published versio

    Influence of External Fields and Environment on the Dynamics of Phase Qubit-Resonator System

    Full text link
    We analyze the dynamics of a qubit-resonator system coupled with a thermal bath and external electromagnetic fields. Using the evolution equations for the set of Heisenberg operators, that describe the whole system, we derive an expression for the resonator field, accounting for the resonator-drive,-bath, and -qubit interaction. The renormalization of the resonator frequency, caused by the qubit-resonator interaction, is accounted for. Using solutions for the resonator field, we derive the equation describing qubit dynamics. The influence of the qubit evolution during the measurement time on the fidelity of a single-shot measurement is studied. The relation between the fidelity and measurement time is shown explicitly. Also, an expression describing relaxation of the superposition qubit state towards its stationary value is derived. The possibility of controlling this state, by varying the amplitude and frequency of drive, is shown.Comment: 15 page

    Feasibility of Experimental Realization of Entangled Bose-Einstein Condensation

    Full text link
    We examine the practical feasibility of the experimental realization of the so-called entangled Bose-Einstein condensation (BEC), occurring in an entangled state of two atoms of different species. We demonstrate that if the energy gap remains vanishing, the entangled BEC persists as the ground state of the concerned model in a wide parameter regime. We establish the experimental accessibility of the isotropic point of the effective parameters, in which the entangled BEC is the exact ground state, as well as the consistency with the generalized Gross-Pitaevskii equations. The transition temperature is estimated. Possible experimental implementations are discussed in detail.Comment: 6 pages, published versio

    Condensation of Pairs of Fermionic Atoms Near a Feshbach Resonance

    Full text link
    We have observed Bose-Einstein condensation of pairs of fermionic atoms in an ultracold ^6Li gas at magnetic fields above a Feshbach resonance, where no stable ^6Li_2 molecules would exist in vacuum. We accurately determined the position of the resonance to be 822+-3 G. Molecular Bose-Einstein condensates were detected after a fast magnetic field ramp, which transferred pairs of atoms at close distances into bound molecules. Condensate fractions as high as 80% were obtained. The large condensate fractions are interpreted in terms of pre-existing molecules which are quasi-stable even above the two-body Feshbach resonance due to the presence of the degenerate Fermi gas.Comment: submitted to PRL. v3: clarifying revisions, added referenc

    Quantum logic gates for coupled superconducting phase qubits

    Full text link
    Based on a quantum analysis of two capacitively coupled current-biased Josephson junctions, we propose two fundamental two-qubit quantum logic gates. Each of these gates, when supplemented by single-qubit operations, is sufficient for universal quantum computation. Numerical solutions of the time-dependent Schroedinger equation demonstrate that these operations can be performed with good fidelity.Comment: 4 pages, 5 figures, revised for publicatio

    Adiabatic Landau-Zener-St\"uckelberg transition with or without dissipation in low spin molecular system V15

    Full text link
    The spin one half molecular system V15 shows no barrier against spin reversal. This makes possible direct phonon activation between the two levels. By tuning the field sweeping rate and the thermal coupling between sample and thermal reservoir we have control over the phonon-bottleneck phenomena previously reported in this system. We demonstrate adiabatic motion of molecule spins in time dependent magnetic fields and with different thermal coupling to the cryostat bath. We also discuss the origin of the zero-field tunneling splitting for a half-integer spin.Comment: to appear in Phys. Rev. B - Rapid Communication

    Entanglement of superconducting charge qubits by homodyne measurement

    Full text link
    We present a scheme by which projective homodyne measurement of a microwave resonator can be used to generate entanglement between two superconducting charge qubits coupled to this resonator. The non-interacting qubits are initialised in a product of their ground states, the resonator is initialised in a coherent field state, and the state of the system is allowed to evolve under a rotating wave Hamiltonian. Making a homodyne measurement on the resonator at a given time projects the qubits into an state of the form (|gg> + exp(-i phi)|ee>)/sqrt(2). This protocol can produce states with a fidelity as high as required, with a probability approaching 0.5. Although the system described is one that can be used to display revival in the qubit oscillations, we show that the entanglement procedure works at much shorter timescales.Comment: 17 pages, 7 figure

    Continuous Observation of Interference Fringes from Bose Condensates

    Full text link
    We use continuous measurement theory to describe the evolution of two Bose condensates in an interference experiment. It is shown how the system evolves in a single run of the experiment into a state with a fixed relative phase, while the total gauge symmetry remains unbroken. Thus, an interference pattern is exhibited without violating atom number conservation.Comment: 4 pages, Postscrip
    • …
    corecore